
AD-A171 369 SILICON COMPILATION USING A LISP-BASED LAYOUT LANGUAGE 14
(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
N A MRLRGON-FRJRR JUN 86

UNCLASSIFIED F/G 9/2 MLIIIIIIIIIIIII
EhEmhmhhshmhhIIIIIIIIIIIIIII..fflf
EIIIIIIIEEIIIE
Im,,,hEEllllEK
EEghhE//h/l//E
EIghlllEEEIhIl

1111.0 t 18

E 1.25 11.4 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL. BUREAU OF STANDARDS- 1963-A

61a

NAVAL POSTGRA'UATE SCHOOL

-DTIC

SEP 0 3 =5l

THESIS --

SILICON COMPILATION USING A LISP-BASED
LAYOUT LANGUAGE

by

Manuel Ambrosio Malagon-Fajar

June 1986

Thesis Advisor: D. E. Kirk

Approved for public release; distribution is unlimited-.

r00

86 9 o~ 2 s

* - *2

E

C' ITO
4*4' ~j - I

I, A

Eel, Si~t

II.

Eli

p p
A

.2

A

SECURITY CLASSIFICATION OF TWOS PAGE 4)A 7 ?61
REPORT DOCUMENTATION PAGE

la REPORT SECURITY ClASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTIONIAVAILABIIUTY OF REPORT Approved for
public release; distribution is

2b. OECLASSIFICATION I DOWNGRAOING SCHEDULE n limit ed.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if 4011111able)

Naval Postgraduate School 62 Naval Postgraduate School

6c. ADDRESS (City. State, and ZIPCodr) 7b. ADDRESS (City, Stat., &nd ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

S . NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If apokicable)

SC ADDRESS (City. State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK r.NIT
ELEMENT NO NO NO ACCESSION NO

1 1 TITLE (Include SecuftYClauification)
SILICON COMPILATION USING A LISP-BASED LAYOUT LANGUAGE

P ERSONAL AUThOR(S)
Manuel Ambrosio Malagon-Fajar

"3a TYPE OF REPORT I3b TIME COVERED 14 DATE OF REPORT (Year. Month. Day) I5 PAGE COuNT
Master's Thesis FROM TO 86 June 208

'6 SUPPLEMENTARY NOTATION

COSATI CODES 18. SUBJECT TERMS (Continue on reverie if necenary and identify by block number)
-ELD GROUP SUB.-GROUP Silicon Compilation; LISP; Layout Language

A (e eTwo related silicon compilers developed at

MIT's Lincoln Laboratory with a common layout language are examined.
The simpler one, the Lincoln Boolean Synthesizer (LBS), is a Complementary
Metal Oxide (CMOS) technology based program for generating chips out of
arbitrary boolean expressions. MacPitts, on the other hand, can
implement advanced programming language constructs in N-Channel (NMOS)
technology. A study of their layout language, Lincoln Laboratory's
LISP-based Layout Language (L5), and its implementation is presented.
In addition, there is also a brief discussion of how Macpitts's functional
repertoire can be changed.

.'0 3'SfSn9uT1ON/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
.-'.NCLASSIFIEDUNLIMITED 0 SAME AS RPT 0OTIC USERS UNCLASS IF I ED

22a 14AME OF RESPONSIBLE INDIVIDUAL 22b TELEPNONE (Include Area Code) 22c OFFIC.E SYMBOL

Pnf Q_ P_ Kirk (408)646-3451 1 62Ki
D FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

...... "."..'.".--.

Two related silicon compilers developed at MITs Lincoln Laboratory

with a common layout language are examined. The simpler one, the Lincoln

Boolean Synthesizer (LDS), Is a Complementary Metal Oxide (CMOS)
technology based program for generating chips out of arbitrary boolean

expressions. MacPitts, on the other hand, Implements advanced programming

language constructs In N-Channel (NMOS) technology. A study of their layout

language, Lincoln Laboratory's LISP-based Layout Language (LS), and its use
Is presented. In addition, there Is also a brief discussion of how Macpitts'

functional repertoire can be changed.

ftCopyWEPECc

Accesion
For

NTIS CRAWI
TIC TAB 11

11"Wanflour.ced Ui

M A~ . ibutl
>)utfc on

Avallabidty Codes

DjAvai and Ior
Dm speial

IH

2. LISP Function Definition: def and defun 43

3. Frequently Used LISP Functions ... 47

a. Binding Variables: set, setq, let and let* 47

b. List Selection: car, cdr, nth and nthcdr 49

c. List Construction: cons, append and list 51

d.Functional Application: apply and funcull 52

e. Predicates(the Values t and oil) and the cond

Control Structure ... 53

f. Iteration: prog, do, do* and mapcar C3

4. Iteration and Recursion ... 60

D. THE FRANZ LISP PROGRAMMING ENVIRONMENT 62

h:Program Development Aids ... 62

2 . S um m ary ... 6 C

11. MACROS, FUNCTIONS AND DATA STRUCTURES: LINCOLN.L 70

A . M A C R O S ... 7 0

1. Data Abstraction and Macros ... 71

2. Eval and the Backquote Macro-

3 . Lincoln.l M acros ... 3 0

a. Numerical Comparison Predicate Macros 80

b..Type Predicate Macros ... 8 .

.FU N CT IO N S8

1. APL Like Operators ... 6 83

2. Selection Functions .. .6 4

3 . S et Functions ... 8 5

4. Num eric Functions 86

5

a. In-m em ory storage .. 126

b. on-disk storage .. 129
2. CIF.2 . C F .. : 3 11

3. Caesar ... 132

4. Summary ... 134

V. TOP.L AND PREPASS.L: THE TOP-LEVEL .. 135

A. THE TOP-LEVEL .. .135

1. Franz Lisp's Default Top-Level ... 135

2. Example Top-Level .. 136

B. LBS COMPILER ... :42

C. MACPITTS COMPILER ... 145

VI. ORGANELLES ... 153

A. OVERVIEW .. 153

B. AN EXAMPLE ... 159

VI I. CONCLUSIONS .. 169

APPENDIX A : MISCELLANEOUS TOPICS ... 171

A. LAYOUT ERRORS ..

B. EXPERIMENTING IN MACPITTS 4....... I74

LIST OF REFERENCES .. 182

BIBLIOGRAPHY ... 185

INITIAL DISTRIBUTION LIST ... 204

7

LIST OF FIGURES

2. 1 Passing of Values in Nested Functions ...

2.2 The LISP Object Hierarchy ..31

3. 1 The Defstruct Function Hierarchy ... 75

3.2 man Def struct Operator Functions7

The defstruct-long Definition Without Backquote 7

4.1 (layout-inverter 4 t),.

4.2 (align-items inverter "vdd (mirrorx inverter)
"vdd)

i". 1

4.3 * (merge inverter (move inverter 20 0))

4 .4 (la y o u t- a n d 4 4 t) 1

4.5 (layout-flag "(ni menie mini moe) 9 138) 121

4.6 (river "NM 3 10 "(8 17 26 37)
'(5 1 7 2 0 4 1 5 7)) ... I

4.7 L5-symbol -storage1 5

4.8 Caesar, L5 and CIF Conversions ... I33

6.1 Prepass Function Flow ... 154

6.2 MacPitts Program Hierarchy .. 154

6.3 de finition de fs truct .. 158

6.4 (organelle-==-bit-0) 1,60

6.5 (organelle-==-bit-n) ... 16 1

ACKNOWLEDGEMENT

Many thanks to Professors D. Kirk, H. Loomis and 0. MacLennan for

valuable time spent discussing this thesis and related ideas.

Professors R. Hamming and R. Strum, with their iconoclastic manner,

were a cheerful source of encouragement.

MIT Lincoln Laboratories provided a copy of L1S and MacPltts to work

with. Their research In this area was a source of motivation.

Dr. A. Domic and Dr. D. Johannsen through their lectures, writings and

personal contact answered many questions and fostered an Interest in

programs that make computers.

Special appreciation Is extended to B. Limes, D. Shaffer, A. Wong, S.

Whalen, M. Williams and R. Johnson for their technical expertise and support.

Dr. F. A. Malag6n-Dfaz and Mrs. E. Fajar de Malag6n provided many

years of loving nurture and the belief that ideas shape the world.

CAPT E. Malag6n, USMC, read through several drafts and gave many

constructive comments.

LT A. Mullarky, USN, created the equality cell which was used to

modify a MacPItts' functional unit.

MAJ E. Weist, USMC, worked on a graphical Interface to MacPitts and

gave useful insights into the compiler's more arcane aspects.

This thesis is dedicated to the American people and Navy.

III
I..

Modern philosophers like Dreyfus, Haugeland, Heidegger, Husseri and

Wittgenstein take different stances on what constitutes intelligence.2

In the meantime, success in war and peace depends on computers.

Sensors, controllers and actuators melded into smart machines build cars

round the clock or kill at long range. Additionally, computing machines

process data used In all phases of decision making. The range of use extends

from simple word-processors up to expert consultants.

However, the potential use of computers has only begun to be explored.

And, though there have been many Impressive results from computer expert

systems, they have been limited to specific domains of expertise. Therefore,

in order to break through to a new level of processing activity. the Defense

Advanced Research Projects Agency (DARPA) launched a major Strategic

Computing (SC) program. (DARPA, 1983, pp 1-18)

SC has a goal of creating a widespread machine Intelligence technology

in the United States. It aims at creating a prototype autonomous land

vehicle, a pilot's associate and a battle management system. The SC program

Is multi-level and addresses issues from microelectronics to software

design. However, several areas, such as vision and speech recognition, which

humans do so effortlessly, are difficult for machines with present

approaches as Indicated In this quote (DARPA, 1983, p. 33):

Recent progress In developing vision for navigation has been severely
constrained by lack of adequate computing hardware. Not only are the
machines which are now being used too large to be carried by the
experimental vehicles, but current machines are far too slow to execute
the vision algorithms In real-time

2 See the bibliography.

13

The first problem Is addressed by creating a flowchart interface in

which the user graphically creates state diagrams that are converted for

the user into MacPitts programs. (Weist, 1986)

The second issue is the subject of this thesis: an examination of Lincoln

Laboratory's LISP based Layout Language (L5) and Its relation to MacPitts.

L5 Is a LISP based language used by MacPItts to compile Very Large Scale

Integrated (VLSI) circuits automatically. L5 is also used by the Lincoln

Boolean Synthesizer (LOS), a Complementary Metal Oxide Semiconductor

(CMOS) compiler of arbitrary boolean expressions, to generate combinational

logic circuits.

Both of these compilers have many interacting programs linked together

to execute automatically. Alteration of this behaviour requires that the

programs, composed of L5 and LISP code, be modified.

Therefore, the main questions examined in this thesis are:

a How is L5 created?

a How is L5 used?

The answer to these questions is given by:

@ Introducing LISP;

e Covering LISP extensions needed to create L5 (lincoln.l);

a Presenting L5;

e Grouping several programs into a "compiler"; and,

a Modifying a MacPitts functional unit.

LISP fundamentals are covered in Chapter I1. The ideas of functional

programming and other general concepts are discussed. After this overview,

the presentation covers LISP functions and usage. Additionally, a look is

15

~t

Appendix A contains a description of alignment problems caused by

incorrect CIF plotting or organelle specification; and, a sketch of how to

experiment in the MacPitts environment.

In summary, this thesis covers L5, a flexible Idiom for procedurally

creating VLSI circuits, and shows how understanding L5 makes MacPItts and

LBS accessible for modification.

17

', ; "" i, ., , .' " ':' €,' ! i ':; ', ., ',,. . ,, ' ,'. ," , ,.-,r ,, , ' , .. € .r . , ,, ,' v.°" € ' , ';

1. Functional Programming

/mp t1wu&tV/a s are based on directing control through a series

of assignment statements. LISP on the other hand applies functions to their

arguments. (MacLennan, 1983, p. 345)

A function takes a combination of arguments and assigns a unique

value to It. A fundtlanal or Wp/icative language' is built upon a simple

Idea that is well illustrated In this quote (Hofstadter, 1985, p. 452):

A programmer's instinct says that you can cumulatively build a system,
encapsulating all the complexity of one layer into a few functions, then
building the next layer up by exploiting the efficient and compact
functions defined In the preceding layer. This hierarchical mode of buildup
would seem to allow you to make arbitrarily complex actions be
represented at the top level by very simple function calls.

:This spirit of functional application pervades both MacPltts and LBS.

But, before looking at LISP's functions, a language for talking about LISP,

Backus Naur Format, is introduced.

2. Backus Naur Format (MNF)
BNF is a concise set of symbols for describing the syntax of computer

languages. Its key Idea Is that the description should look like the language

It's talking about (MacLennan, 1983, pp. 166-173). A terse set of BNF

symbols is given below:

e The " "and"> " Indicate syntactic categories. For example, (integer>,
<LISP form>, etc..

a The ::= means "is defined as".

I Haugeland, 1984, pp. 125-164 gives a very cogent explanation of
several computer architectures (LISP included].

19

There is another important LISP object, a isi. defined below:

<list>3 (atom>*) I {<atom> I <iist>}*)

A list is a left parenthesis followed with zero or more atorris or

lists, closed off with a right parenthesis. Notice that this is a recursive

definition: a (list> Is defined In terms of Itself. Examples-of lists are:

0. (a), (a b (c d) e).

N4ote that 0, oil, is both an atem and a list.

BNF Is used throughout this thesis to describe LISP syntax. L;SP's

basic functional format, <lambda function>, can now be analyzed.

3. Lambda Functions

One method for writing functions In LISP is with lambda notation. [For

other-:function definition formats see Section II.C.21 Perhaps the esies'

way to understand lambda notation is with this quote showing its history

(Touretzky, 1984, p. 16):

Lambda notation was created by Alonzo Church, a mathematician et
Princeton University, as an unambiguous way of specifying functions, their
inputs, and the computations they perform. In lambda notation, a function
that added 3 to a number would be written +x.(3 + x). The k is the Greek
letter lambda.

3 Refer to Sections II.C.1 and II.C.3.b. A list can also be viewed in this
1 Ight:

<list> ::= (<head><tail>)
<head> ::((<atom> I <list> }
<tail> :: <list>

For example:

0 has <head> := oil and <tail> :a ll
(a) has <head> :a a and <tail> :: all
(a b (c d) a) has <head> :: a and <tail> : (c (€ d) e)

21

The lambda function format can be named by using the LISP primitive

d@1111 In this manner

<function-name>::
-30 (del (f uncti on-name> (Iambda f uncti1on>) <CR>

<f uncti on-name) ::<atom>

A function created with del is applied to Its argument's parameters

by using Its name as follows:

<value> ::: -3o ((function-name><parametern)CR>

By naming the function, Its usefulness is Increased. Instead of typing

the unwieldy lambda form each time the function Is applied, the user simply

types in the function's name. Consider F(x,y) z 3x + y2 defined as a LISP
f unction named quadratic:

- 3,- (del quadratic
;; function-name> *- - (def <function-name><lambda function>)

(nImbie (a g)
(plus (times 3 utilmes g g)Ml3CR>

;LISP returns (functton-name:
quadratic

This function, quadratic, is applied by using Its name with

parameters:
-3, (quadratic 2 3)<CR>
;(quadratic <x(y>)

-3, (quadratic (quadratic -1 2)(quvadretlc 2 3))<CR>
;(quadrati c -1 2) :: 1 & (quadrati c 2 3) :: 15
;(quadratic 115S):= 228

223

~See Section I I.C.2 for another method for defining functions I dee .

23

static bariable: a variable that is allocated before execution of the
program begins and that remains allocated for the duration of execution of
the program.

variable (5)(OIE)
(1) in computer programming, a character or group of characters that

refers to a value and, in the execution of a computer program,
corresponds to an address.

(2) a quantity which can assume any of a given set of values

Three more terms need to be defined: A bovA d variatla is one of a

function's formal parameters [function's arguments]. A §1001 valale has

its value set at the top level. A f(e variable is not a bound variable, but its

value Is used or changed by a function. (Wilensky, 1904, pp. 39-40) Now that

the terms have been defined, the concept of variable scoping can be

examfined.

There are two basic variable scoping techniques -- static scoping

and dynamic scopIng. In static scoping (also called lexical scoping) a

procedure is called In the environment of its definition; in dynamic scoping

a procedure Is called In the environment of its caller." (MacLennan, pp. 112-

113, 1903). in other words, (MacLennan, p. 109, 1903):

e In dynamic scoping the meanings of statements and expressions are
determined by the dynamic structure of the computations evolving in time.

a In static scoping the meanings of statements and expressions are

determined by the static structure of the program.

Franz LISP is a dynamically scoped language.7 Therefore, bound

variables which are changed during a function call are restored to their

original values upon exiting the function. If calls to other functions are

7 COMMON LISP is a lexically scoped language (Winston, 1904, p. 54).

25

-) def1 09 test (beed)
(setq bed (1 based))

;; bound:= bound + 1
;; The symbol "free" Is not bound within the context of test.

(* bomd freUi)<CR>
;; the result := bound + free

test

-) (test froe<CR>
;; First, "bound" assumes "free's" value: bound:= free's value:= 2
;; Second, bound := bound + I := 2 + 1 :: 3
;; Third, the result := bound + free := 3 +2 =5

5

In contrast if LISP used cl//'rfre/ ca:

(1) bound ::z free := 2

(2) "bound" increments: bound := bound . 1 := 1 + 2 = 3

(3) since bound ::= free, *free* also becomes 3: free := 3

(4) the result is: bound + free := 3 + 3 = 6

In summary, Franz Lisp resolves the problems of variable context and

scoping by using call bg value and dynamic scoping. This issue can be

extended to functions. Next, consider how functions refer to other functions

or to themselves.

5. Recursion and Iteration

LISP allowsfunctions to refer to themselves. This approach, known as

recursion, is briefly introduced in this section.'0 Suppose a function that

raises a given integer base to a nonnegative integer power is desired. Two

9 datum is an alternate method of defining functions, see Section I I.C.2.

10 A more in depth discussion of recursion is given in Section II.C.4.

27

0. INTERPRETED, COMPILED OR DUMPED LISP

The Interpreter allows Interactive running Of LISP programs and provides

an effective environment for debugging LISP code. At the same time, LISP

also provides a compiler which can considerably speed up program execution

for large code segments. This section examines the different ways LISP can

be run and covers very basic Input and output.

1. The LISP Read-Eval-Prlnt Looi. Interpreted LISP

In Section II.A.I, several examples showed how the LISP Interpreter

reads' and "evaluates' Input, and then "prlnts" out a result. This read-eval-

print loop Is discussed In this section. The two major participants in this

cycle, toel and quote, are also covered.

a. The LISP Prompt -,Start" and Stop)

To obtain" -) ", so that (LISP form>s with ("- and " " can run,

the Franz Lisp Interpreter Is Invoked by typing lisp after the UNIXO prompt:

Il Usp<CR>
Fromz Lisp Opips 3L69

The - " Is a prompt sign which means that inputs will be

evaluated' or "interpreted'. An open parenthesis, a (", instructs the

interpreter to do whatever follows, and a closed parenthesis,") ", tells the

Interpreter to stop doing It. (Wilensky, 1984, p. 2XHasemer, 1984, p. 6)

Therefore, If the user Inputs: (plus 1 2 3 <CR>, the a (" starts the LISP

interpreter "plusing" I with 2, then with 3, and stops "plusing" upon

reaching 3 a. For example-

- (plus 1 2 3) (CR>

29

(LISP form>s' 3 or
cexpression>s
/\

<atom>s <dist>s
/ \

(numberl sgmbol>s
/ \

floating-point> <dntegens

Figure 2.2 The LISP Object Hierarchy

Examples of these LISP objects are shown in Table 2. 1:

TABLE 2.1

EXAMPLES OF LISP OBJECTS

LExample LISP Code

a (LISP form>s (pIls 1 2), 1.23, (0 (plIus 1 2) 33,

* <istbs 0, (((q i(s) 1 2)), (plus 1 2),...

a (atom>s 1, 1.1, I, Meum,...
a (sUmbol>s a, e u223, %Ueo ,...

e (specialsymbol>s -, -, - - ..

It seems that LISP is always searching for a value. The next

section answers the question: "How does it accept something literally?'

c. Eval's dual: quote or a "

When evaluation Is undesirable It is inhibited with quote or its

abbreviated form, a quote mark. The " a " is a (special sgmbol> that stops

evaluation. This idea is evident from the syntax:

<LISP form> ::: -) ((istS <LISP form>) I '(LISP form>}<CR>

13 Refer to Sections II.A.2, II.A.3 and II.C.1.

14 -\- [backslash) Is an escape character. " ," and ",@ " are described in
Section III.A. 1.2

31

However, there are errors where execution might not be stopped by

the interpreter's. In that case, LISP can be stopped with an interrupt. The

first control C ["1E I sets an interrupt flag: the system waits for a 'safe'

place to exit. The second "IC forces all system calls to compiled code to

check the Interrupt flag; and finally, a third "C causes an immediate

Interrupt. (Foderado, 1983, Section 10.6) Here Is an example:

litentupt: "C
Break il
(1):

An interpreter is a useful interactive tool; however, to handle

large programs and obtain efficient object code, a compiler is needed.

2.: Compiled LISP

I Compilation of LISP programs increases their execution speed. In

order to keep compilation dependencies among several programs

straightened out, a makefile is used. In addition, a makefile can join

together several programs so they can run as a large unit.

a. The Compiler

The Franz Lisp compiler is invoked from the UNIXO C-Shell with

the following command (Foderado, 1983, Chapter 12):

% liszt [-<option>*] <filename>

There are several options, among which, q [compile in quiet model

and u [create a cross reference filel are very useful. The compiler can be run

with several options at one time as follows:

15 Richard Hamming has jokingly said that perhaps computers do in fact
show free will, it's just that people always call a repairman when they do
it.

33

- ~ V .. ,.1

A"

Consider the following example maketile composed of four

dependent results [L.., WOrl, ClaI, and le]. The desreN results are

separated by a colon from their prerequisites and placed on the same line.

Notice that two results, clom, and sic, have no associated prerequisites.

The next line contains the actions to create each result. Assume that all of

this code is in a file named " Makefile " In the users dlrectoryg which

contains L5.1 and lIncoln.l. Makeftile's contents are now presented, and

described Immediately afterwards [the explanation continues into Section
1.5.3:

Le: L5.I Iiacale
liszt -qu L5

ierk: LMe Iimcea.e
-. Cee 17 teil-bem (eeel)\1e

(load 'liaclim.eieei 'LS.IJ\
(diplisp'9 uerki(euit))m I lisp

clear ri 2 0 -f LS.e iacelne

17 The ache command prints out its arguments. The function, eal-
whe, tells the LISP compiler to evaluate the expressions that follow,
instead of compiling them. (Wilensky, 1903, 281)

1s The backslash a \ " is an escape character, therefore the next line is
treated as a continuation. The I " stands for 'pipe", i.e., the results of the
first process are passed on to the next process.

19 Saves the LISP environment in an executable file named "worko. Typing
work' will then recreate the LISP system as it was running when It was

dumped.

20 Forced removal of files.

35

Eummpkes erl1|.1 tap.l
INSTILL bim *tract.I
L3.I c-reatlmes.c sim.I
Makef le

And finally, back to the UNIX prompt.

LISP files which are dependent on each other can be organized using

a makefile. They can also be individually loaded into the interpreter and

saved as one executable file using dimplisp.

3. Interpreted and Compiled LISP: danlldisi

In some programming languages disparate programs can be combined

to form a working unit using a linker. In LISP this can be achieved by

creating an "environment" that contains all the programs. This is what the

wirk section of the example makefile created in the previous section does:

m •ake work(CR>
* Execute the actions under the "work' heading of this makefile.

eco "(eawil-mem (eaSleea d llclm.a)(lead L5.3)
(dimplisp mweertkiitil" I lisp

* Load lincoln.o, L5.o and organelles.o Into LISP, dump this envi-
•ronment In an executable file named "work' and then exit LISP.

Framz Lisp, @pas 3 .59
-) [Ifas Iiicoline
;; fasl is the function LISP uses to load object code files.
-[Ifasi L5.ei
I

In summmarj, an executable file, mork, has been created. Typing

mark as an imperative command places the user in LISP with the functions

in L5 and lincoln also available.

% .erk<CR)

37

I cat .Ilsprc<CR>
* The UNIXO "cat" command aumps the tile "llsprc" onto the
"terminal screen.

(eval-whe (load oal)
(load limcolm.a)
(load 91.)
(lead "ergemelles.e)

Since LISP automatically loads the .Iisprc file [in this case all that

the file contains is one large siil-ihom <LISP form>], then the result is

that all three load functions are evaluated and the files loaded in.

SIlsp<CR>
* The lisp Interpreter Is invoked and the .]1sprc file Is loaded.
Franz Lisp Spas 38.69

"The user is now in LISP with the three files loaded. The main

difference between using this method and dmmplip is that a dumped file

usually requires at least a megabyte of storage, whereas loading several

files using the .lisprc file takes a short while.23 In Chapter V.A and Appendix

A.0 it will be seen that the MacPitts and LBS environments can be invoked by

typing their respective names without any arguments. For example:

% macpitts [or libs]
usage: Mcpitts (filemue) I(eptioas)i

A closer look is now taken at how files are input into LISP and how

functions can be output into files.

23 A compromise between these two approaches Is to use the autorun
option when compiling a LISP file [e.g.. % liszt -r <fllename>]. This creates
an object file which has a small piece of bootstrap code attached. The
object file can then be run as an executable file. (Wilensky, 1984, p. 284)

39

The pretty print function can also be used to send <LISP form>s to a

file In the following fashion:

-) (pp 26 (F temp.I) M-t-te-n<CR>
;; Output the function m-to-the-n to the file temp.l.

t

Conversely, a <LISP form> can be read from a file, without being

evaluated, using read:

-) (reid (iifile 'tep.))CR>
;; Read the next <LISP form> from the temp.] file. When the end of
;; file is reached then nil is returned. The <LISP form> is not
;; evaluated when read. To do so eval must be explicitly used. For
;; example: (oval (read (infile '4-flags))), where 4-flags has a
;; <LISP form> that needs to be evaluated.
(def I-t-the-i

(limbdI (m a)
(cod ((ierep a) I)

(t (times m (m-te-the- m (- M1111)))

-> (omit)<CR>
;; Leave LISP and then output temp.l to the screen using cat

26 Other functions that are used for output are paten and print. Their
syntax is similar:

<LISP form>
-) (paten [']LISP form> I(etflle <filename> ['m])])<CR>

<LISP form>:::
-) (print V'l<LISP form> [(mtfiIle <filename> [.D])])<CR>

These functions both output to the terminal if the optional outfile
argument is not given [the 'a appends the output to the previous file
contents, otherwise they are wiped out]. Because these functions do not
send carrage returns when they finish their output, they are usually seen in
conjunction with (terpri [(mutfile <filename> [Sal) which outputs a
terminate line character sequence. For example:

-) (paten $I Stop printing. I)(terpr lCR>
Stop printing.

41

I r

1. LISP's Basic Structure: The List

A function and a list of data look the same In LISP. For example, the

next <LISP form>,

(rsplace-Item-polmts Inserter mew-pIlmts),

is an application of a function [replace-Item-polnts] to Its arguments

[Inverter and neI-poilts]; or, It can also be a list of three elements

[replece-tei-pilts, Inverter and now-points].

Which one It It? It Is both! A LISP program is a list, and evil

normally applies the list's head as a function to the list's tail. If the list is

quoted, then It's treated as data. (MacLennan, 1983, p. 348)

Atoms and lists are referred to as symbolic expressions. Expressions

are called forms if they are to be evaluated. 'Considered as data, a list may

be called an expression; considered as a piece of procedure, the same list

may be called a form'. (Winston, 1914, p. 20)

With these Ideas in mind another look can be taken at the procedure

for LISP function definition.

2. LISP Function Definition: del and defiu"

Up to this point the reader has seen functions that take a fixed

number of arguments all of which are evaluated. This class of functions is

called an expr. There are three other categories: fexpr, lexpr and macros9.

An fexpr takes an unlimited number of arguments, but does'nt evaluate them.

27 See Section II.A.2 for function definition using del.

28 Macros are discussed in Chapter Il1.

43

II

I . . .,, , , ,%, .,, ., ,o, .. . -* . --. *.*.. , , . , -- .,..,

* A. li ,- "4. F - J -l r -~ - W J n

For example, a function that finds the logarithm base 2 of a number

can be defined In LI5P as follows:

-) (defioo log-tm (member &optiomhl (base 2))
;; The primitive LISP function quotient finds the quotient of two
;; numbers, and log finds the natural logarithm of a number. The
;; optional argument "base' defaults to a value of 2 if a
;; parameter is not given for it.

(qlotleut (log .mubr)(Ilg base)))<CR>
;; Find the logarithm base 2 or the given base of a number.

lag-two

This function is applied in the following ways:

-) (log-ture 13)<CR>
;; (log-two <number>)
;; Find the log base two defaull of 13.

3.718439718 i41192

-) (lg-twe 13 1)<CR>
;; Evaluate the base ten log of 13.

1.113 94335230637

Another way to define this lexpr is as follows:

-) (ilt log-tie a
;; In this format, the symbol "n", will be bound with the number
;; of arguments supplied. The function arg gives the parameter
;; associated with the position corresponding to the number it is
;; given.

(quotient
(lag (erg I))

;; If a second parameter is provided use its value, if not use 2.
(log (cOd

((> a I)(rg 2))
(t 2)))))CR>

log-tuwo

The third functional class, an fexpr, doesn't evaluate its arguments

and takes a variable number of them. Nothing comes for free though, the

flexibility of a variable number of inputs is offset by the overhead of

45

3. Freouently Used LISP Functions

A synopsis of common LISP functions is presented to briefly

familiarize the reader with LISP's syntax. First, a look at functions used to

give values to symbols.

a. Binding Variables: set, setq, let and let*

Variables are assigned values with set or setq [set quotel.

Although set only takes one symbol at a time, It has a similar syntax to
setq:

(set ([']<symbol>) {[']<LISP form>})
(setq ((symbol> ['<LISP form>})

These two functions are applied as follows:

-3 (set "1 '(a b d))CR>
;; Set 'A' to have the value "(a b c)'.

(a b 0)

-3 U(CR>
A's value is (a b c).

(a b C)

-)(setq El C (1 2 3)3 (plus 1 2 3))CR>
;; The <symbol>s are unevaluated, but are respectively assigned
;; the results of evaluating the <LISP form>s. setq returns the
;; value of the last evaluation it performs.
;; B:= A, C := (1 23) and D := (plus 1 2 3) := 6

6

-)o <CR>
B's value has been set to A, but A (a b c).

(a b)

-3 C<CR>
;; C's value is (1 2 3).

(12 3)

47

The variables are restored to the values they had prior to

participating in the let* construct. With these methods of variable

assignment in hand, a look is now taken at list manipulation.

b. List Selection: car ,cdr33 , nth , and nthcdr

LISP is based on the application of functions to arguments. The

syntax of LISP generally has a structure of the form:

(Wunction-name><argument>*)

Therefore, it seems natural to have a selector that picks the first

element of a list, the "function", and another selector that returns a!i the

elements of a list except the first, the "arguments". These selectors are car

and cdr:

<head> ::- -> (car <list>)<CR>
<tail> ::= -> (cdr <list>)<CR>
<list> ::: (<head><tail>) 3 4

<head> ::< LISP form>
<tail> ::- <LISP form>

The application of these basic selector functions is shown below:

-> (car '(plus 1 2 3 4))<CR>
;; (car <list>)
;; car selects the first {"function" or "head") list element

plus

The" tail" selector, cdr, is used as follows:

3 car and cdr were assembly language instructions for the IBM 704 on
which LISP was first implemented. An instruction was divided up into
fields. Two of the fields were named the address and decrement. car and
cdr were the instructions for getting the contents of the address pointed to
by these fields. (Charniak, 1985, p.48)

4 Compare to the definition of a list in Section II.A.2.

49

-) (mth 3 "end In those dgs it Came to paSSll<CR>
;; (nth <lndexxlist>)
;; Starting at 0, return the indexed argument of the given list.

dogs

-)(mthcdr 2 '(bglenerphism: all is form V natter))<CR>
;; (nthcdr <index><ist>)
;; Starting at 0, return the indexed cdr of the given list.

(lma maitter)

Lists can be separated Into their components with the functions

covered in this section; but, how are they built up?

c. List Construction: cams, append and list

The list selectors car and cdr separate a list Into Its -head- or

'function" and its 'tall" or "arguments". The list constructor cams is their

dual: It synthesizes a "head" and "tall" Into a list. (Winston, 1984, p. 29-31)

<list> ::= -) (cams [']<head> [<taIl>)CR>
<list> ::= (<headxtaIl>) ::= -3 (cons "<head> '<tail>JCR>
<head> ::= <LISP form>, and <tall>::= <lIst>3

Therefore, In order to synthesize a list out of two parts:

-) (cams "pls 0(1 2 3))<CR>
;(cons '<head> '(tail>)

(plus 1 2 3)

To create lists use list with this format:

<list> ::= -) (list ([<LISP form> }*)<CR>

An example that makes a list out of several arguments is:

-3 (list 7iis Is an 'joimed 'semtouce!)CR>
;; Make a list out of the following elements.

(This Is a joined stmmmII)

35In actuality an atom can form the tall element, this produces a dotted
list, e.g., (<head>.<tail>)

51

I

-) (applg appeni flu b)(c d)(i f)l<CR>
(miee)

fumcull Is similar to apply, except that it accepts each parameter

for the function individualIy. It has this format:

<value> ::= -) (frei ali <function-name> { [8<parameter>)*)<CR>

Examples of fumlmli now follow:

-) (funlll pies 1 2 31<CR>
;; (funcall <function> ([]<parameter>)*)

6

-) (fIcall 'append '(a b) 'Ic d) (e f))<CR>

Up to this point, functions can be applied sequentially to each

other; but so far, there is no way to conditionally apply a function. In order

to build control structures that can do this, the Idea of a predicate Is now

Introduced.

e. Predicates (the Values t and ali) and the ciau Control Structure

A predicate Is a function whose value is either true or false. The

LISP symbol for true Is t and for false It's al. In LISP any non-il value is

considered to be true. Both t and il evaluate to themselves. The empty list

Is also called all and is the only LISP expression that is simultaneously a

list and an atom (Winston, 1904, p. 44-46)

Therefore, the following Is true:

(t I il) ::= -) (<predIcate><LISP form>*)<CR>

Many LISP predicates end with a p, e.g. lstp, minusp, etc., but

there are important exceptions such as: Ito=, mii and equal. (Touretzky,

19154, pp. 14-17) So, for example:

53

I , .,- r ; -,,, ,.-, , ,.,..,, .;, e-.', :, ;- .' ...,: :.-:-: .- :-.:: ;,:-,:.,.-" .,.:...:..-, '- ,

)(ami)CR>

;If mando has no arguments it returns t.
t

-(sod 1 2 (plus 2 3))<CR>
;If all its arguments are non-nil, then eand" gives the value of
;;Its last argument; otherwise, if anyj argument evaluates to nil
;the result is nil.

5

)(or)<CR>

;If *or has no arguments it returns nil.
oil

-(or (zerep3s 1W) 3 5)ICR>
;Returns the first non-nil value, otherwise if all its
;arguments evaluate to nil, ' or* returns nil.

15

In another example, examine how a predicate, ***ber?,3 9 Is

constructed using conditional tests and the LISP function member

-io (member an 1(b c a d e11<CR,
member returns a list that starts with the first Instance
of the el ement that i s bei ng checked f or membershi p I n a

;list.
(o de)

The code for the member? predicate is now shown. Observe that

-list -is a parameter and not the list function:

38 -o (zerep 1)CR>
Nil
-3 (zerup UI(CR>
t

39 See Chapter III for a description of llncoln.l. In llncoln.l predicates
usually end with a "?.

55

-) (iefie Eatc-thut
(thini list predicate &optienil till)

(coed
;;This is the recursion's basis condition:
;; If the list is empty, then all the results are in the tail.
;; Since the first elements are being consed into the tail
;; first by the application of match-that to the remainder
;; of the list, (cdr list), when the basis condition is met,
;; all the element in the tall will be backwards.
;; Therefore, reverse them and return this as the result.
;; This is the Oasis Condition: stop if the list is empty.
((Bull? list)(raerse tail))
;; The list wasn't empty, therefore, apply the predicate
;; to the element's head. If the predicate is satisfied,
;; place the head in the list called "tail".
;; This is a Recursive Condition: apply the predicate to
;; first list element, (car list), and match-that to the
;; rest of the list, (cdr lIst).
((fuIcai prUdicate thing (car list))
(match-that

thing
(cdr list)
predicate
(cams (car list) tail)))

;; Since the list wasn't empty and the head element did'nt
;; satisfy the predicate, apply this algorithm to the rest
;; of the list. Another Recursive Condition.

(t
(match-that thing (cdr list) predicate taiiI40(CR>

;; LISP returns the function's name
matcI-that

Predicates can also be used in iterative control structures.

40 The " I " is a right superparenthesis. A right superparenthesis can

substitute for as many regular parenthesis, ") " as would be required to
close off the (LISP form>. However, the count stops as soon as a left
superparenthesis," [", is encountered. (Wllensky, 1985, p. 42)

57

The setq's are used to assign values to variables within the context

of the prig. As an example, review this definition of a factorial function:

-) (sefuI factorial (integer)
;; Bind local variables to nil.

(prog (result)
;; Initialize local variables

(stq result 1)
;; A loop that will find the factorial of a positive integer.

loop
;; IF the integer is zero then exit the prog and return the result.

(coed ((zerIp lteger)(return result)))
;; OTHERWISE, multiply the Integer by the accumulated result,
;; then decrement the integer by one and repeat the loop.

(setq result (* Integer result))
(setq integer (11- iteger))(ge loop)))<CR>

factorial

A more structured iterative syntax, which can do everything prog

does, uses i or do* (Winston, 1984, p. 86):

(I (((<variable> <initial-value> <update-form>)}*)
(<end-test> <LISP form>* <result-form>) <body>)42

<end-test> ::= <test form>43
<result-form> ::= <LISP form>, and <body> ::= <LISP form>*

However, if an action is to be performed across lists, then 'the

lazy man's do loop", mnpcar, can be used. (Winston, 1984, p. 79) For

example, given the LISP primitive zerep, a list's elements can all be

checked for equality with zero in one fell swoop:

-> (mapcar 'zorop (I I a 8 6 2))<CR>
(nil t oil t t nil)

42 See Section II.C.4 for an example of do.

43 See Section I I.C.3.e for <test form>'s format.

59

(" .. Y". -. ' i '.
,
"- ! " J-'" ,' : " .'-," ' , -'=-.'- :.-''-.' .'_,' ¢ ,.. 'LC " t' ¢L , L" ."' "."."."'."."3 ".. " "'_" " " " "."

-(defum rn-tm-the-n (Mma)
(41643 ((result I V IN result))

(power.a (- power)
((zerup powner) result)))CR>

;Raise a number to a positive power r~

-(rn-tm-the-n 2 3)<CR>
result, := 1, power:= 3, (zerop 3):= nil

,result 2 ::(2 1):: 2, power:= (3 1):= 2, (zerop 2):= nil
,result 3 :: (2 2): 4, power:: (2 1):= 1, (zerop 1):= nil
result4 ::(2 4):= 8, power:= I- W=): 0, (zerop 0)::= t

Recursion accomplishes indefinite repetition "by having a function call

itself during its execution." (Wilensky, 1964, p. 73) A recursive

implementation of rn-tm-t1he-n (Winston, 19034, p.. 64):

-(imurn rn-tm-the-n (rn a)
;The exponent [n I should be a non-negative integer.

;Test to see if the exponent [n I is zero,
;if it is, return a value of one.
;This is the Basis Condition.

((zermp 3 13)
;If the exponent is not one, then
;multiply m by (rn-to-the-n m (I- n)), n.b.,
;the recursion will end since n will be reduced
;to zero and (rn-to-the-n m 0) is one!

;;This is the Recursive Condition.
(t (0 =n (rn-tm-th-n rn (1- Qn46))) 3))<CR>

rn-tm-thu-n

45 Refer to Section I I.C.3.e for do's syntax.

46 1 - decrements by one, whilIe 1 + increments by one.

61

logical error. The three basic functions associated with these programs are

trace, desbug and step.47 To see how they work, recall factlril:

-> (factorl"I 5)<CR>
;;5*4*3*2* := 120

128

The operation of zerep can be observed using trace, as follows:

-) (trace zerop)<CR>
[uut.lI.d /usr/lilb/lisp/ trace]
[fasi /usr/libllisp/ trace.* I
;; The tracer returns a list of functions being traced.

(zerep)

Now, every time that zerup is used its associated values are shown:

-) (factorial 5)<CR>
I (Eater) zerop (5)

" I ENID zerep oil

I <Eter) zerep (4)
I cENID zerep oil
I (Enter) zerup (3)
1 (ENID zerop nil
I <Eatorn zurep (2)
I 0111D zerup oil
I (Enter) zerup (1)
I ([NID zerep oil
I <Enter zerup (a)
I ([NID zerup t
123

47 For discussions of these areas see:
(Foderado, 1983, Chapter 1 I [Tracer], Chapter 14 [Stepper],
Chapter 15 [Debugger] and Chapter 16 [Editor])
(Wilenskg, 1964, Chapter I I [Debuggingl)
(Charniak, 1965, Section 2.0 [Debugging])
(Winston, 1904, Chapter 14 [Debuggingl)

48 Defined in Section I I.C.3.f.

63

S

• . .o . . • • o = Q • • • . . . '°

tsetq iteger (I I -I lmtserln2CR>
2
(s loop)
(cumi ((zerup integer) (return result)))

(zerep lmteger)dCR>
;Go into debug mode. Usually invoked with: (debug)
Mals /usr/Ulb/Ilsp/fiu.*I

< ------ debug ----- 3
;Obtain a listing of debug commands using help.
:bulp<CR>
u/un/uf/unf go upi.e.more recent

(in frames) (of function f)
up / up n go up to next (nth) non-

system f unction
d / dn go down, i.e. less recent

(opposite of u and up)
ok I go continue af ter an error or

debug loop
redo / redo f resume computation from

current frame (or at f n f)
stop restart in single-step

mode
return e return from call with

value of e (defauit Is nil)
edit edit the current stack

frame
edltf / editf f edit nearest fn on stack

(or edit fin f)
top / bet go to top (bottom) of

stack
p / pp show current stack frame

(pretty print)
where give current stack posi-

ti on
help / h Iprint this table --

/usr/l lsp/doc/flxi t.ref
help ... got the help for..
pop / Od exit one level of debug

(reset)

65

fumcal l-evulhook*
evil hoot*
(zerep integer)
(comi (<001 (return result)))
eveihook
Conti nue-evil uatl on
tumcal 1 -ovil hook*
evil hhok
(Coni ((zerep Integer) (return resultf)
(prog (result) (setq result 1) loop ...)

evaihook
Conti nue-evil uiti on
funcal 1 -evil hook*
evil hook*
(preg (result) (setq result 1) loap ...)

(factorial 3)
evilhflak
Conti nue-evil Uaion
funcil 1 -eve] hook*
evil hook*
(factorial 3)
;; The stack has LISP system function calls interspersed
;with the factorial function. A handyj feature of the
;error loop is that the current variable values can be
;easilyj obtained. Showstack returns nil.

Nil
;; What is the "integer' variable's value?
<1% imtegerCR>
2
;; What is the "result" variable's value?
(1% resultCR>
3
;; Leave the error loop.
(1) (resutKR>

[motors to top leal]
Hopefully, this very brief look at some LISP programming tools will

encourage the user to experiment with them. The next section reviews the

salient points covered up to now.

67

*Lisp functions (equivalent to subroutines or procedures in~ othler
languages) are data objects that can be passed as parameters to other
functions. This makes it possible to write extensible control struCltures mr,
user programs that are Yery difficult to duplicate in more traditicnal1
languages.

69

1. Data Abstraction and Macros

Abstraction of low level functions can aid understanding. For

example, the unmnemonic car might be renamed head:

-) (defin heed (n)(car u))<CR>
heed

-) (head U(I B I)<CR>
I

The mnemonic quality of this new function is offset by the overhead

of having a user defined function calling a LISP system function. The LISP

function car takes one instruction, but a user defined function takes five or

more instructions! (Brooks, 1984, pp. 179- 180)

Since data abstraction is an important programming tool, the cost of

the extra function calls in compiled code is removed by the use of macros.

"A macro is a function which accepts a Lisp expression as input and returns

another Lisp expression." (Foderado, 1983, p. 8-3)

A macro is efficient because it creates code that the LISP interpreter

evaluates only once. Subsequent calls to the macro use the expanded code

(Wllensky, 1984, pp. 180-195). The function defIcre [define macro] is

one of three ways to create a macro (Foderado, 1983, p. 8-3). For example:

<macro-name>
-) (defiicre <macro-name> (<argument>*)<LISP form>*)<CR>

<macro-name>..-
-) (del <macro-name> (macro (<argument>)<LISP form>*))<CR>

<macro-name>....
-)(defuI <macro-name> macro (<argument>)<LISP form>*)<CR>

A macro is applied Just like a function:

<value> ::= -> (<macro-name><parameter>*)<CR>

71

.3

- - - - - - - - - -*J.. -..-.

":'-'"" ",:, '7," ""': ""","o / ",' . ." , "o .'; '. ••."• .. . '. -' , ". " ." , - o a . ". ' "-"•"'",'-" ," -"

the backquote macro: expressions are not evaluated unless specified.

(Foderado, 1983, pp. 5-3,8-4) The symbol for inhibiting evaluation is - $ ",

for evaluating " , * and for evaluating and splicing into a list ,@ "

(Wilensky, 1984, p. 202) These symbols can be applied in succession, as

composite operators, and are summarized in Table 3.1 below:

TABLE 3.1

BACKQUOTE MACRO SYMBOLS

SymDbo Function

$ Inhibit one level of evaluation
Evaluate [within the context of" $ "1

,t Evaluate and append
$, or ,$ No-ops, they can be removed. 4

O$() or ,'() No-ops
$(,x) (list V)
$(,x .eg) (cons m g) [y must be a list]
S('*x ,'g) (appeld I) [x & y must evaluate to lists]
S(,'x ,@*y) (appeld ' 'n4) [x and y must be lists]

So for example, if the variable I is set to have as its value the list

(1 2 3), the effect of $ ",," and "," can be observed:

-> (sstq 1 '(1 2 3))<CR>
;; The variable "A" Is assigned the list "(1 2 3)" as a value.

(1 23)

-) $(I ,I ,el)<CR>
" A" is unevaluated," ,A is evaluated," .@A" is evaluated and

;; spliced into the list structure.
(1 (1 2 3)1 2 3)

4 $((a b) (C I) ,e'(9 1) 99'(6 I))<CR>
;;" ," acts as a composite operator ,@(quote (<argument>))

;; So, first apply quote, and then " ,9".
((b) (C I) a 1 6 I)

73

The backquote macro is frequently used in writing macros. It's used to

create a template of the code the macro will provide to eual, for example:

-) (defmacro head (I) $(car ,HI<CR>
;; Equivalent to: (def macro head (X)(list 'car X))

head

These ideas are all brought to fruition when functions that generate

other functions are made. A good example is the defstruct [define

struciure] macro.5 This macro consists of two levels. The lowest level

creates the desired function according to a template. The upper level

evaluates the function that was created. A brief sketch and a bit of the LISP

code demonstrates the idea:'

eval

defstruct

eval eval

defstruct-short defstruct-long

Figure 3.1 The Defstruct Function Hierarchy

The code that follows reflects the structure in Figure 3. 1. There is a

main eval-when form that evaluates the defstruct function. This

function in turn has two emil-Ihei forms in it. They will either evaluate

5 See Section III.C for more detail on defstruct.

6 The reader should skim through this code looking at how the evaluation
statements are nested with macro or function definitions. Look at the code's
form and the extent that It "shows" the macros it is generating.. The LISP
function evl-when tells the interpreter or compiler to evaluate this code
when i4 is loaded into LISP.

75

As an example, a list with fields 'name" and "age" will be called a

man. Examining the results from the bottom up Shows how functions are

first created and then evaluated into the LISP environment. First the lowest

level functions delstruct-sbert- fields and defitruct-roplace-

fields create macro definitions In the following fashion:

-3, (iefstract-shart-flelds "mm 'name age) 1)CR>
;Since there are two f iel ds two sel ector macro def ini tions
;are made. They are returned in a list.The results are:
;A macro def ini ti on that sel ects the name f iel d: man-name.

((def monmame (macro (bedg)S(cur ,(cadr bsdg))))
;; A macro definition that selects the age field: man-age.
(def mom-age (macro (bodg)S(cmir ,(cadr budg)))))

-30 (doIs tract -replace- fields owman'(name age) I)<CR>
,Since there are two fields two mutator macro definitions
are made. They are returned in a list.

,A macro definition that replaces the name field with a new
value is created and called replace-man-name.

((del repluce-man-mame (macro (bedy)S(uppend
(list ,(caddr bodg))(cir ,(cedr baig))))

;A macro definition that replaces the age field with a new
value is created and named replace-man-age.

(def replace-man-age (macro (hedg)Sappend
(list (car ,(cadr bedg)),(caddr bodgi)
(tcdr ,(cudr bodg))l)))

The above results are now spliced Into a list of macros:

-(defitruct-sbart 'man (name agell<CR>
;; The macro def ini ti ons are spi ced i nto a I Ist:
((dl make-moe (macro (beig) ...)
(del man-some (macro (beig) ...)
(det mon-age (macro (beig) ...)
(def replace-mam-mame (macro (body) ...)

(dlt replace-mum-age (macro (beig)..)

77

% - ~..'~V.% ~ .'4*-

(del defstruct-smg
(lambda (tgpe beds)

(cued ((mull beds) ())
((er (mull (cir beds))

(list? (car beds))
(atm? (cmir beds)))

(err 'I imualli imfatruct sgmt.. I))
(t (append (coms (list 'del

(cement make- (car beds) '-tgpe)

(list 'nacre

(list couns

(list 'coms
(list 'list

'quats
(list equant.

(car beig)

(cons (list d'(cd btO
(eanet 'Is- tgpe '- (ear beds) 8?)
(list 'macru

(list 'list
sq0

(list 'list
"car
'(cair beds))

(list 'list
"quots
(list 'quate

(car bedg))))))
(appernd
(dafstract-larg- fields
tgpa (car beds) (cuir bugs) 2)
(dafstract-replaee- fields
(eameat (car beds) .- tsps)
(cair beds)

Fi gure 3.3 The defstruct-erng Definition Without Dockquote

79

~** ~ &Y V

called an organelle which is covered In Chapter VI. (Siskind, 1982, pp. 14-

15)(Lincoln Lab Report 662, 1983, pp. 25-26)

TABLE 3.2

NUMERICAL COMPARISON PREDICATES

Predicate Name Predicate Test

- equality with zero
(U negative sign
)1 positive sign
) -@ non-negative value
(=- non-positive value
4- less than or equal
>- greater than or equal
,D not equal to zero
o not equal
-1 equality with one

In addition to the numerical comparison macros shown above,

lincoln.1 has several macros that perform type checking.

b. Type Predicate Macros

LISP's applicative nature allows functions to be passed as data and

provides data handling flexibility at the expense of performing very little

type checking.e (Gray, P., 1984, p. 111) Whereas in LISP predicates usually

have the form <name>p, in linconl.l they have the form <name>?. Take for

example .a LISP and a lincon.l predicate that checks if a number is odd:

-3 (Iddp 3)<CR>
;; LISP predicates often end in a " p"

t

S For a discussion of type checking see (Aho, 1986, pp. 343-380).

81

B. FUNCTIONS

1. APL Like Ogerators

APL was one of the first programming languages to apply functions

over whole data structures, thereby freeing the programmer from the

tedium of iterating over elements.9 John Backus, one of FORTRAN's creators,

wanted to reason algebraically about programs and suggested applying APL's

Ideas in a purely functional manner. The operations of this algebra would

consist of applying, binding, selecting, "composing, reversing, mapping and

reducing functions." (MacLennan, 1983, p. 405)

Several functions are shown here as examples of the many useful

functions with an APL flavor In this section:

-) (sucb-tbt I 1 -1 9 -2 -3) '(U)<CR>
;; (such-that <list> <predicate>)
;; Return all list elements satisfying the predicate.

(-1 -2 -3)

-) (slasl '((I b c(d c a b)(o f b)) Il 'umi)<CR>
;; (slash <list> <identity> function>)
;; Return the result of applying a function to a list's elements.

(a b c d a 1 Ib)

-) (sort (1 4 2 5 3 9) o)<CR>
;; (sort <list> <predicate>)
;; Sort a list's elements by a predicate.

(954321)

-) (car-lIst '1 2)(3 4)(5 6)))<CR>
;; (car-list <list>)
;; Find the first element of each of a list's sublists.

(1 35)

9 For an excellent APL user's guide see (IBM, 1983, p. 13).

03

-) (thst-list
(1 46)
'(Sad is the woman who cries along the wag.)
I(lap;, Wan sings))<CR>

;; (nthset-lIst <index-list> <template-list> <new-element-list>)
;; Replace the indexed positions in the template-list with the
;; respective elements from the new-element-list.

(lap;, is the anD Who i/ag aloing the wag.)

3. Set Functio

A LISP list can be viewed as a set with elements, e.g.:

(element I, element2, ..., elementN } (<element>*)
<set> ::= <list>

With this point of view in mind llncoln.l provides a variety of set

opera.tors:

-, (setlfg ((a b)(m b c)(a &j(e) 2m (aI<CR>
• (setify <list>)
;; Remove redundant elements from a list. Notice that (a b) and
;; (a) occur more than once In the list. Italics are for emphasis.
((a b €)(o h) 2 'a (a))

-) (ulen 11 2 3 4) 12 3 5 4 6 7))<CR>
;; (union <set>, <Set>2)
(234567)

-, (intersection 111 2 3 4 5) 80 4 5 6))<CR>
;; (intersection <set>, <set>2)

(345)

- (set- 11 2 3 4 5) 12 4))<CR>
;; (set- <set>l <set>2)
;; Remove set2 elements from set 1 .

(135)

85

' :' , ", ' ,,' ' ,." r ' " ' '.. .. :i ' " - - - -' ; / -'" ... '. 7 ,. - I,,",::a

The wide spectrum of functions seen In this section crop up

throughout MacPitts and LIS. Surprisingly enough though, a large portion of

the functions encountered in these programs are generated by one macro:

iefstruct.

C. DEFSTRUCTS 12

The lincoln.l ielstruct [define structure macro] allows the user to

create new data types. It automatically generates macros to create, select,

change or type check instances of the data type. The following quote states

the idea of a structure (Winston, 1984, p. 100):

Conceptually, a structure is a collection of fields and field values.
We are allowed to define new structures by specifying their particular
field names and default field values. We are further allowed to construct
individual structures of any already defined type, to access those
individual structures, and to revise them. However, in keeping with the
spirit of data abstraction, we are not allowed to look at the way individual
structuresare represented Internally, for we are supposed to be isolated
from the actual representation.

lefstructs are frequently used throughout LBS and MacPitts. They are a

useful tool when a large number of different data types must be

manipulated. The defstruct macro creates short or long data structures.
1. Short Def struct

The short iefstruct has the following format:

(short form> ::= (Wield>* I (<ffeld>*<list> })
<field> ::= <symbol>

12 Refer to the examples in Section III.A.2. Lincoln.l's defstruct macro
is slightly different from those found in other versions of LISP.

87

Notice that the result is a list with all the field values placed in

the order they were entered.

b. Short Selector

Iefstruct also creates selector macros to obtain field values. A

short selector macro that picks out <field> of a <type> short defstruct has

the format:

<short-selector> ::: <type>-<field>j
<field-value> '-

-) (<type>-<f1eld>j {'(<field-value>i) I
(list [']field-value>)})<CR>

For example:
-) (pint-mame '(in 3 7 NM ((signaI)(riper))))<CR>
;; Get the polnt's name:

in

-) (polmt-attrlutes '(uss -2 7 NO ((pouer)(out)))<CR>
;; Get the point's attributes:

((power)(out))

c. Short Mutator

The third macro automatically generated for a short defstruct is

used to change field values. Mutators replace a <type> defstruct's <field-

value> with <field-new-value> and have the following form:

<short-mutator> ::= replace-<type>-<field>
(<field-value> ... <f1eld- new-value> ...<field-value>N)

-) (replace-<type>-<fi eld>j
{ '(<field-value>) I (list ['<field-value>)

{ [']<field-nw-alue>i))<CR>

89

In both the short and long structure cases defstruct is used. A long

defstroct example with a tree genus and eight species:

-) (defstruct tree
mull O

ret (lager left bottom rlgbt top)
sambol-call (Name)
move (tree do dg)
rotcu (tree)
rotccw (tree)
mirrors (tree)
mirrorg (tree))CR>

This long structure creates a tree data type. There are eight tree

cases: mull, ret, sgmbol-call, move, rotca, rmtccu, mirrors and

miorgl 5. Note that five of the tree cases have a tree in their field. The

field arguments are also destructs! A long structure has four associated

functions: constructors, selectors, mutators and interrogators.

a. Long Constructor

As in the short structure, macros to construct data type instances

are automatically generated in the long structure. A constructor that
instantiates the species <casej>-<type> has this format:

<long-constructor> ::= make-<case>-<type>
(<case> <<case>j-field-value>*) ::=

-) (mke-<case>-<type> { [']<<case>j-fieid-value>)*)<CR>

15These eight cases correspond to eight basic operations on rectangles.
Null is no action or no rectangle. lect is a rectangle with the given layer
and dimensions. SgIbal-call represents a method for generating
hierarchical representation. Meve, retcI, retecc, mirrors and
Iirrirg represent respectively a displacement by dx and dy; ninety degree
clockwise and counterclockwise rotation; and a flip about the x axis or the y
axis. The operators these trees represent are described in (Crouch, 1984, p.
8).

91

<long-mutator> ::= replace-<case>i-<type>-<field>j
(<case>

<<case>i-<fleld>l -value>
<<case>i-<field>j-nien-value> ...
<<case>-<field>N-Value>)::=

-3 (repIuce-<case>-<type>-<fied>j
{'(<case>i <<cass>-field-value>+) I

(list (['I<case> }{ ['J<<case>1-field-value> }) }
{[']<<case>i-<field>j- new-value>))<CR>

This is best seen in a few examples:

-) (replace-rect-tree-top '(rect NM 1 2 3 4) 1 5)<CR>
;; replace a "rect-tree" species' "top" field with 15.

(rect NM 1 2 3 15)

-) (replce-muOe-tree-ig
(me (rect I 2 3 4) 9 8)
I 1)<CR>

;; replace a "move-tree" species' "dy" field with 11.
(moe (rect 1 234) 911)

The tree example has shown that a long structure adds a level of

complexity to the iefstruct concept. Why bother? Because there is a big

advantage to be gained In grouping similar ideas together and then

differentiating between them. In order to do this a long defstruct also

creates interrogators.

d. Long Interrogator

Long structures offer a limited form of data type checking with

their interrogator macros. A check to see if a structure is a <case>i-<type>

species can be made as follows:

93

I 4kyeae

The other check that is mode ensures that oniy the last fiewd in a

defsiruct is d list. This uccurs in defstruc1-slort-fields co<

defstruct-lung-tieids where the fields are also checked to be not armiutu.

4. Summary

defstruct offers the programmer a tool for data abstraction. This

idea along with the mnemonic character of constructors, selectors,

mutators and interrogators are great aids in data manipulation. defstrucis

are extensively used in LBS and MacPitts. It might also be speculated that ,U)

some degree the mind-body paradigm is reflected in MacPitts' functi'n-da,

language and controller--data-path architecture. In any case, Table 3.

presents a defstruct summary:

TABLE 3.4

DEFSTRUCT FUNCTION SUMMARY

Function Short Structure Long Structure

Constructor make-<type> akae-<case>i- <type>

Selector <type>-<field>, "case>-<type>-<fi eld>j

Mutator repIace-<type>-<field>i replace- <case, j- ,'Upe. e,.

Interrogator None is-dtype>-<case,?

95

d

- * --

TABLE 4.1

GLOBAL VARIABLES AND THEIR FUNCTIONS

Var1ibeSau hc Status Modifier& Options

-- L5-sgmbol- (LS.-sqmbol- (L5-sginbsl-staragel
storage storage) ['I<u-iisk I

-L.5-techmalogg (techmelsgg) (tschm.Iagg! [4){<umos
I CMss I cuss-pmw I

cmOS3 I sasi scuus>})

*--L5-mimimum- (minimum- (minimum- feature-
*feature-size feature-size) size!I <centi-)A per%\>

-L.5-sginbol-Iist (L5-sgibal-Iist) & (add-sgmhol-ta-L5-
(create-calsi- sgmbel-list (symbol>)
sgmbol-item

<position>)
--LS-sqmbml- --L5-squmbel- (setq -- L5-sgmbel-

number number number <integer>)&
(symbol-number)

-- L5-sgmbml-pert (L5-sgmbel-port) (setq -- LS-sgmbei-
part <port>)

--L5-sgmbel-file (L 5-sgmhsi- file) (setq -- L5-sgmbsl-
file <f Ie>)

(allowed-lagers) s
(allswed-cooductimg- s

(lager-table) lsgro
9M ~ (alowed-technologies) s

All of the global variables can be changed using setq. Functions with,

~,operate by checking the technology global variable and returning an

appropriate response without setting any variables. The, **, denotes that to

change the values returned by these functions the LISP source code has to be

97

.*.***.* *t~~~b*.**- 1~~I< ~ C*R' j.% CEdl

- (L5-svmbaI-fIle)<CR>
;; This file is used to output CIF 3 results.

/tmp/L5sgm 12904

-3 (L5-sgmbm-port)<CR>
;; A port is a LISP I/0 device.

%/tmp/LSsgm 12904

-) (technologg! 'cmms)<CR>
;; Set the technology to cmos and list out its layers.
;;These symbols correspond to CIF layers, e.g. CD = n-type
;;diffusion, CP = polysilicon, CM = first layer meta!. etc..

(CO CP CM CM2 CS CC CS CW NN HP)

-) (tmcbeloigg)<CR>
;;The current technology is complementary metal oxide
;; semiconductor

CuMs

-, (technologg! 'scIes)<CR>
;;These are Calma scalable cmos CIF layers, e.g. CMS =
;;metal2, CMF = metal 1, CPG = polysilicon, etc..
(CMS CMF CPG CI CON CCP CCA CWP CWN

CSP CSN COG)

- (minimum-feature-size! 50)<CR>
;; Set 50 centimicrons to be 1 lambda unit.

5'

-) (minimum-feetur.-size)<CR>
;; Currently 50 centimicrons are I lambda unit.

so

3 "The Caltech Intermediate Form (CIF Version 2.0) is a means of
describing graphic items (mask features) of interest to LSI circuit and
system designers." (Mead, 1980, p. 115) Also see (Sequin, 1980, Chapter 7)
and (Scott, 1986, Magic Tutorial *9 and Magic Technology Manual #1-2).

99 .

2. L5 Data Structures

All L5 data structures are created using defstruct. The generic

object in L5 Is called an Item and is composed of rectangles and labels.

(Crouch, 1983, p. 2) Since an Item is a grouping of smaller objects it is

surrounded with an Imaginary rectangle [box) which encompasses all its

elements. The smallest box which encloses an Item is called the Minimum

Bounding Box [MOB). (Ayres, 19183, p. 64) The syntax for an Item Is:

TABLE 4.3

AN ITEM'S SYNTAX
Catun5ytax

<item> "- (<Ief t><bottom><rght><top><poInts>
<called-symbol-names><tree>)

{<left~lbottomAl

<rightl<top>):: <number>
<points> ::= (<Point>*)

<point>.:= (<name><x><y><attributes>)
<attributes> ::= { (<symbol>*) I ((<symbol>)}*))
<called-symbol-

names> ::= (<number>*)
<tree> ::= { <null-tree> I <rect-tree> I <symbol-call-tree> I

<move-tree> I <rotcw-tree> I <rotccw-tree> I
<mirrorx-tree> I <mirrory-tree>

<null-tree> :: (mall)
<rect-tree> ::= (rect .<layer><ieft><bottom><right><top>)
<symbol-call-

tree> ::= (sgmlbel-call <number>*
<move-tree> ::= on <tree>)
<rotcw-tree> (retce <tree>)
<rotccw-tree> (ratccu <tree>)
<mirrorx-tree> (mirrorn <tree>)
<mirrory-tree> ::= (mlrrnrl <tree>)

An Item structure contains two other structures within it: a list

of pelt short structures and a tree long structure. First, a look at the

Item structure and the creation of a simple Item:

101

" . 4! " : • ,. - -, - .

As is seen in the above example, a list of points is a field in an item.

The pilt short structure is implemented as follows:

-) (defstruct poilt (Erme u y lager attributes))
;; A point is a label. Points have names, are located at
;; a specific x and y location and are attached to a layer.
;A point's attributes can give descriptive information

;; to guide functional application. For example: points
;; with the attribute "external" are actually plotted when
;; CIF is created; the power attribute is used by the
;; function power-line-positions [in the MacPitts program
;; organelles.l] to find Vdd or Vss locations .These
;; positions are then used by layout-metal-lines [in
;; organelles.lJ to lay down a metal line grid.

replace-poiit-lttributes

An example now shows the creation of a pint:

-) (make-poiut '(in) 1 2 *CM
i'((pier)(e(tern @l))

SMake a point whose name is "in", located on CMOS metal
;; at (1 2), and with "power" and "external" attributes.

(In) 1 2 CM ((power)(euternal)

An item's fifth field is a summary of other items used to construct

the item. This <called-symbol-names> field is composed of a list of

numbers. These numbers represent sgibols. A sgmbul is a structure

containing an item's salient information. Computer time and memory use are

reduced when frequently used items are constructed once and then referred

to whenvever needed. Whenever an item is made using the defsgmIhol

function [See Section IV.C.1I1 a pseudo-item, a sgmbol, is placed in the L5-

symbol-IIst. Any use of this item will be reflected in the <called-symbol-

names> field; these numbers indicate a sgmbei's position in the L5-

sgIIIhI-IIst. A sgiibul has the following structure:

103

B. ITEMS AND THEIR OPERATIONS

The Item data structure is the basic building block in L5. However,

having to use the mIes-itei function can be a bit tedious. Therefore, L5

has primitive functions for creating rectangles [Dr boxes] and marks [a

pilt that has an Item format]. L5 also has operators for moving, rotating,

etc., Items and their pints. Items and marts can be grouped together to

form larger units using the merge function.
... f7Item treatton-... .

L5 has four functions for creating primitive items: mil-item, rect,

ben and mark:
TABLE 4.4

FOUR PRIMITIVE ITEM CREATING FUNCTIONS

Function Arguments

mil-item none
rect <1 ayer<xn><ynXx><gXzX>
ban <1 ayer><l ength><wi dth><xct,><ymtw>
mark <name><x><y><l ayer><attributes>

Some examples of these primitive functions are:

-) (Iull-Item)<CR>
;; A null item is useful as a default value for a conditional since
;; it has an item's format with only null fields [Crouch, 1983, p.5]

(all Iil oil lil oil oil (ulli))

-) (rect 'CI 6 1 4 l)<CR>
;; A rectangle has no points or symbol calls. It consists of its
;; MBB coordinates (0 1) and (4 8) and a rect-tree.

(1 1 4 8 Eili ll (rect C11 0 1 4)7)

7 Note the difference between the <LISP form>, (rect 'CB 8 1 4 8), and
the <expression>, (rect CII 1 4 3). The first is a function, the second is a
data object. The first evaluates its arguments, the second is a list of
parameters. Refer to Section I I.C. 1.

105

" -' -" " - ' *" " W ,' " - '_". " . " . " "

TABLE 4.5

TRANSLATION AND MERGING OPERATORS

Function Argme:nt.
more <item><dx><dy> move an item.by dx and dy units
home dtem> place item's top left at (0 0)
first- <item> place Item's bottom left at (0 0)
quidrant

seced- (Itom> place item's right bottom at (0 0)
qudIrant

.. . . .------.. msrig top- o)
quedreit

fourth- <Item> same as home
quadrant

merge <item>* make one item out of several items
merge-llst (<item>+) make one item out of a list of Items
align <item> move an Item so that the named point

<point-name> is placed on the given coordinate
<coordinate>

allgm-items <item>, <item>2 is moved so that its named
<point-name>1 point aligns with <item>'s point
<item>2

(point-name>2
retci (item> rotate 900 clockwise about (0 0)
retocl. <i tem> rotate 90" counter-clockwise...
mirrors <item> mirror about the x axis
mirrrl <item> mirror about the y axis

A brief look at the application of some these functions follows:

-3 (nes
(I I lI 6 I ll ill (rect NM 8 1 1 1)) 3 5)<CR>

;; Move the metal rectangle to the right 3 units and up 5 units.
;; Notice how only the MBB is changed [addition and consing
;; elements into a list are fast]. I.e. The result of the operation
;; could have been: (3 5 13 15 nil nil (rect NM 3 5 13 15)), but
;; if the tree was composed of many elements then each one
;; would need to be moved alsol

(3 5 13 15all oil(news (rect NM I 11) 3 5)

107

N

U

a
E

mm

'L."V

II:

-I

Figure 4.1 (Imget-imsrter 4 t)

109

I

* nnwwrnraME

C

0
L
U

a

S

U

*0

Figure 4.2 (ullgm-items Inuerter eod (minr. Imserter)
modi)

ILI,

U

Fiue43(eg nete mv netr2)

11

TABLE 4.7 (CONTINUED)

POINT OPERATORS

Funcion ArgumentDecrpto
contain <item> prepend the given name to every

(name> point's name In the Item

The following examples show how point operators work. The

Iugeut-imurtsr Introduced In Section IV.B.2.B is again used here. This

time the +5 Volt power point is extracted from the item:

-) (fled (agout-iomurter 4 t) od)<CR>
;; Find the first point named "vdd" in a layout-inverter. Refer to
;; the previous example for (layout-inverter 4 t).

((dd) 8 -2 NM (power))

A more complex Item, lgoeut-ind, Is shown below [Figure 4.41:

-) (leunt-mmd 4 4 t)CR>
;; Another IlacPitts orgenelle. This one "ands" two inputs. Note
;; that the organelle calls <symbol>sl,4A,e,, &1o. It Itself is
;; <symbol>10.The list (1 4 6 B 9 10) shows the symbols.

(9-43259
(((ued) 18 -10 NM (power))
((odd) 8 -2 NM (power))
((god) 21 -41 NM (power))
((Ol) 14 -43 NP (fm))
((2) 19 -43 NP (in))
((odd) 8 -25 NM (power)))

(1 468913)
(sgmbml-Iel 13))

Since this item has more than one +5 Volt power point, they can

be extracted using the following procedure:

-) (find-all (legut-and 4 4 t) 'dd)CR>
;; Find all points named Ydd" in a layout-and item.

(((odd) U -2 NM (powr))((dd) 8 -25 NM (power)))

115

-) (let
((test-Item

(((i) 2 3 Ni (external top))
((odd) I I NM (power left river))
((Out) 3 3 NP (external signal top)))
(123)
(smbel-call 3))))

(fied-attributes test-item O(soterml top)))<CR>
;; Find all points with "external" and "top" as a subset of their
;; attributes.12 This method uses attributes to find points.

(((In) 2 3 N§ (extermel top))
((out) 3 3 NP (@stermel signal top))

After a point has been used it is sometimes desirable to remove it

from the item. There are several functions that accomplish this. Here are

two examples of how to remove one point. The first method requires that

the entire point be specified as follows:

-) (unmert
(IOgeut-lmwerter 4 t)
'((gd) 1 U -10 NM (power)))<CR>

;; Remoye the point from the Item.
(8 -28 2e 8

(((odd) 8 -2 NM (power))
((inl) 14-20 NP (in)))

(467)(sgmibel-c.ll 1))

The second way to delete a point is to use its name:

12 The attributes could be a list of lists instead of a list. In that case
when flind-attrlbutes is applied the attributes parameter has to be a list
of lists. If the points are of the form:

((<name>) <x><ylayer(((<attrbute*))))
Then to use find-attributes:

(fled-attributes <Item> '<attri bute>A)...(<attributeL)

117

-) (let
((test-Item

M(i.) 2 3 NM ((euternlfltopMl
((odd) I11 NM ((poumr)(lefttfrluerMl
((got) 3 3 NP fteuterumlflsigmnl)(top)

(1 23)
(sgmbel-CmlU 3)))

(uommrk-ttrlbutes-list test-Item '((Iett)(tp)))<CR>
;Remove any poi nts that have "l eft" or "top' as part of thei r
;attri butes. The rivYer attri bute ref ers; to the rivYer router.1 4

(11U 3 4moil (1 2 Ufsymbel-caII 3))

Once an item has been created, it may be desirable to give all its

points a common name. By doing this, point functions that use a name as an
argument to search f or poi nts will f ind allI poi nts wi th the common name.

-30 (ceutam (Ingest-and 4 4 t0 good-i)C
;Prepend the name "and-i" to every point's name.

(6-43258
((Mud- I gui) II -1I NM (power))
Hanud-i Iudd) 3 -2 NM (power))
H(mod- I goi) 21 -41 NM (power))
((mud-i 1.1) 14 -43 NP 00.)
((md-i W.) 19 -43 NIP 0n.))
((med-i odd) 1 -25 NM (power)))
(1 460918i)
(21mbel-Cull I11))

Labels [polis or marks] are usef ul as ref erences to direct other

functions. Notice how the next function, Imgmt-flmgsl 5, gives each of its
points a * river " attribute. These labeled points can then be used by the
river function to connect them to other items.

14 See Section IV.B.2.d.

15Thi s f uncti on i s f ound I n the MacPi tts program flIags.l.

119

4h& V-~t

FIN

ID

U7
'A

T,

Fiue45Oln-lg 0lmnaNo a)918

12

~r~wrx~71rswys7rflz ...

x

I
I ~ '.'

Fiue46(ieaM 8(11 63)I 72 15)

12

In order to save memory and time, L5 has a define sgmbll

[defsgmbell macro which treats items in a fashion similar to a subroutine.

The defsgmbel macro has the following syntax:

<def symbol-name>::=
-) (iuflgmbul <defsymbol-name><arguments>)<L5 form>)<CR>

<L5 form> :: (<lincoln form> I <LISP form> I <L5 form>)*

When an Item that has been defined as a dufsgmbol is called with a

set of arguments it is saved as a sgmbol on the LS-sgmbel-llst. Then, if

it is called again by another function with the same parameters, the LS-

sgmbl-list is searched for the submil representing the Item. The

position of the sgomll in the 15-sgmbel-list Is returned and placed in

the called-slmbol-mnmes field of the Item.

If the defulmbil has not been called with the given set of

parameters, then a sgmbol corresponding to the iefsgmlbl will be placed

on the LS-sgmel-ist.

There are other effects of using a Iefsgmbel that depend on whether

the L5-sgmbel-list's value is I-msnrg or am-disk. If it's set to In-

memorg then the Item's tree is saved as part of the sgubel that is

placed on the L5-sgmbel-Iist. On the other hand, if it's set to em-disk,

then the item's tree is not Stored as part of the sgmbel: the tree is

converted to CIF and output to the LS-sgmbel-fiie. These two

possibilities and their effects are summarized in Figure 4.7:

125

The storage location has been set to I.-memorg. A look at how a

defsgmbel works Is now taken:

-io (defmbel buttlmg-comtuct0
(merge

(rect'NMUB.-64 U)
(rust IN@ 8 -4 4 8)
(rect INP S -6 4 -3)
(rust 'NC 1 -5 3 -1)))<CR>

;A butting-contact is one of LS's def symbol s.
buttimg-comtust

-30 (butting- cent st)CR>
;Create a butting-contact item. Notice it calls (symbol>, in the
; 5-symbol -list [I tself 1.6

(11 -6 4 8 oi (1)(sgmbel-caII 10)

What happened to all the layout information in the butting-
contact? It has been piaced on the L.5-slmbel-ist.

-3o (L5-sgmbel-UstJCR>
;The 15-symbol-list only contains a symbol f or butt Ing-cont act.
;symbol-ID :=(butting-contact 4)
;symbol -nest-l evel :1
;symbol -tree := ((rect NM 0 -6 4 0) ... (rect NC 1 -5 3 -1)

M(buttimg-semtmst 4)U9 -6 4 8 ol ail 1
((rest NM S -6 4 6)
(rest NI U -4 -4 8)
(rest NP S -6 4 -3)
(rest NC 1 -5 3 -1))

A defsgubel can be retrieved as a function from the L.5-

sggubel-list using the 1.5-I1tout- to-program function using this syntax:

(del f functi on-name> (lambda all <LS form>*))::
"I (L.5-Item-te-prgrom (item f om><f unctl on-name>)<CR>

(item form> ::= (i<tem> I defsymbol -name>)

127

-) (dofsgmbl lagout-Inverter (rotlol mark?)
(let

(diffusion
(merge

(move (dill-cut) 1 6 -1 6)

(work 'god 13 -10 'NM '(power))
(coed

((- ratie I 4)(rect 'N§ 7 -11 16 -16))
(t (rect 'NI 7 -2e 16 -16)))))

(gets (rect 'NP 13 -23 15 -14))
(mark

(mark? (mark 'lal 14 -21 'NP '(I)))
(t (noll-itoml))))

(merge diffusion gate mark (megeut-pullup))))<CR>
;; The desymbol macro returns a name.

Iugeut-louerter

If many large items are placed on the LS-sgmbol-lIst and all

their trees are also placed there, the list quickly becomes unwieldy. An

alternative is to keep all the other Information In the 1S-sgmbel-Iist,

convert the item's tree to CIF and place the CIF in the L5-sgmlbol-file.

b. no-disk Storage

This storage mode reduces the L5-sgmbl-llsts size by changing

the item's tree to CIF. It Is useful when Items don't need to be retrieved

from the L-sgwbel-lIst with their trees [for example, the L5-item-to-

program function will only create a program out of a symbol if its tree is

on the L-slgWbl-lIst; similary, the Caesar conversion routines {Section

IV.C.3) also require li-memrl storage].

An example can be examined after resetting all the global

variables using the start function. First the L-sgmbel-steroge is set

to em-disk and the effect compared with the results of Section IV.C.1.a.

129

% A.g L a _ ___'

2.~i

When the no-isk storage mode is used, an item's tree is sent to the

LS-slinbe-flS as CIF. A brief look is now taken at the CIF result from

the previous example:

-3, (L5-s imbeI- fle) CR>
/tmp/L5sV.2@374

-3, (@one cat /tinp/L5sjm21374CR>
_____-;; xecalowsAINIXO functians t.b gerormad fromLISP. In this

;case the contents of the L5-symbol-flle are concatenated to
;the terminal. The f ollIowing is C IF output. C IF uses -("and"

;for comments.
IS 1;
(define OCF symbol> named 1);
(None: betting-contact);
(CIF comments are not printed out);
L NM; B L 16u8 . 15.. 536, -756;
(since this was output with 250 centimicrons lambda);
(all the units must be divided by this amount);
(CF defines its rectangles like L5 does its boxes:);

((box 'NM 4 62 -3))
L NIP; IEL 10SUE l 1ll C 510, -511;
((box 'ND 4 4 2 -2));
LNP; 8EL 1ISSUE 750 C 5889-1125;
((box 'NM 4 3 2 -3));
L NC; IEL 589 W 10ll C 566, -756;
((box 'NM 2 4 2 -3))
BF;
(end <C IF symbol>I's def ini ti on);

The function that L5 uses to create CIF has the following format:

<file>.clI::= -)(ileut (['1<ltem>)['I<file>){ <ti tle>))<CR>

131

,-9-caesar--r"
.ca L5

\\-mcasave- J/

cif2calS cifout

Figure 4.0 Caesar, L5 and CIF Conversions

There are several functions associated with the Caesar editor. Table

4.8 gives a synopsis (Crouch, 1g83, pp. 17- 18):

TABLE 4.8

CAESAR FUNCTIONS

Functo Argument 20 Qfltn
caesar <item><file> Converts an <item> into Caesar format, the

Caesar editor is invoked and the results of
the session are saved in the <file> as items.

d1'plog <Item> Displays the <item> in Caesar without
generating any L5 code afterwards.

camut citem><file> Outputs the <item> in Caesar format to
<file>.ca

calm <file> Reads in a Caesar formatted file and
converts it to L5 code.

easame <caesar file> Converts a <caesar file> into L5 code and
<L5 file> saves the result in <L5 file>. Each Caesar

symbol is made into an L5 iosgmbel.

1, This is a Berkeley CAD conversion program from CIF to Caesar format.
A minor problem with this present scheme is that Caesar evolved into the
more versatile Magic system. The routines need to be modified to use Magic
format instead of Caesar format.

20 All of these functions are fexprs, therefore, none of the arguments are
quoted.

133

V. TOP.L AND PREPASS.L: THE TOP-LEVEL

The reader has seen how a group of LISP object files can be loaded

together to create a LISP environment'. This chapter shows how a top-level

function Is used to make an environment accessible with parameters. In

other words, the environment will be invoked just like other UNIXG

commands. Two programs that contain top-level functions are top.1 [LBS] and

prepass.I [MacPitts]. In addition, these programs contain the "compilers" for

LBS and MacPitts. A look at these top-level programs brings to light major

differences and similarities between LOS and MacPitts.

A. THE TOP-LEVEL

1. Franz Lisos Default Too-Level

A top-level function creates the prompt-read-eval-print loop.The

user can call the top-level function and can create a prompt-read-eval-print

loop with different characteristics. To do this, the user defines a new top-

level function and types (reset) to run it. (Foderado, 1983, p.13-

1)(Wilensky, 1984, p. 138)

When the imperative cormmand lisp is given to UNIX9, the interpreter

Is brought Into action with its default top-level: fremz-tmp-leeI 2 . This

occurs because the variable top-level is bound to fremz-tep-leel.

I See the discussion In Chapter II Section B.2.b.

2 Defined In /usr/lib/lisp/toplevel.1

135

.* .* % . . -*' * * t; .. * - . . .tf *m - Pm =e',*. o . . * .. . -. =% , %=. . . .°.

The top-level file, top.l, is composed of several LISP functions. The

first, chlp-tep-luel, performs a check of the arguments used when

Invoking "chfpn. If there are no arguments then the "chip" dumpllsp

environment is called up. If there are arguments, then these are passed on to

the chip-compller function. The user should note that cbip-top-level

was set to be the top-level function In the example's makeflie above.

In other words, the "chip" dump]isp environment has a function, chip-

top-level, which handles the arguments placed in the command line when
. "chip" is invoked. Notice that if no arguments are given, then a message Is

printed out and the user is placed Into the chip " dumplisp environment.

This feature can be used for debugging purposes (See Footnote 3 of this

chapter]. A look at this function follows:

(defin chip-top-leuel 0
;; If "chip" is invoked without any arguments:

(cued ((-I (ergo))
;; (argy) gives the number of elements on the command
;; line that invoked this LISP. So, If the user types:

X chip <argument 1 ><argument 2 ><argument 3 >
;; then (argv):= 4

(paten
"usage: chip filemne) (eoptions]11

;; (patom <expression>(<port: default to screen>])
;; print out the expression:
;; usage: chip <filename> [<options>]
;; The" [" and" I" indicate an optional argument.
(terpr)
;; (terpr) or (terpri) terminates printing.
(setq user-tep-leuel ()
;; The variable user-top-level is set to nil, but
;; notice that In the makefile it was set to chip
;; top-level. Therefore, If chip is called up
;; without arguments, then chip-top-level calls
;; up the" chip" dumplisp environment

137

-> (count 5)
(2345)

(soit))

The next function is set up in the makefile to handle interrupts. When

an iterrupt is received it prints out "chip-imterrupt:, the signal number

and then exits the "chip" dumplisp environment. Here is the code:

((efmi cbip-Iitsrrupt-hemdler (sigmaI-oumber)
;; This is used in the makef iIe as the function that
;; handles interrupts (2), floating exceptions (8),
;; alarms (14) and hang-ups (1). (Wilensky, 1984, p. 270)

(pates M chip-ieterrpt:)
(paten siglnl-number)
(terpr)
(exit)))

The previous functions allowed the user to invoke the "chip" dumplisp

environment as a UNIXO command. The following function Is used within the

"chip" dumplisp environment to pass arguments to the chip-cempiler

function:

(del chip
;; The nlambda function format takes many arguments,
;; they are unevaluated and bound as a list to the
;; function's single parameter. For example:

-> (chip adder cif obj)
;; then args := (chip adder cif obj)
(mlmbIl (ergs)
;; (chip <filename> [<option>*])
;; <option>::: (nostat I noobj I nocif I meg}
;; <default option> ::= stat obj cif
(chip-compiler ergs)))

The next function coordinates other programs in order to produce the

different types of output. It first uses the process-option function to set

the global variable, eptli-list, to the options that have been input. Then

139

other hand, there may be other options, besides the default values, which
the user can input. The following function examines the options the user has

input and updates the option-list as required:

(delve process-option (option)
(ced

((Not (at@=? option))
(warning Ueptiem met ateme33

;Options must be atoms.((.ini (3 (length (explode option)) 2)
(equal om (car (explode option)))
(equals' (cair (explode eptiemi))

;I s the option more than two letters long and its
;f irst two letters an "n" and V0 [the option is of the

form: noXXXI'? Explode separates an atom into the
;characters that compose it (implode is its dual).

(coed
;Is the rest of the option (i.e. excluding the - no1
in the option list?

((member?
(impode (cudr (explode option)))
eptem-list 3

;; Drop the option from the option-list.
(etoption-list

;Remove the indexed element from the
;option-list.

(atbirep
;Find the index of the option without the
*" no " in the option-list.

(lets
(implode (cddr (expoie option)))
option-list3

eptism-lIst))
;O therwise, if the option is not of the form noXXX,
;then add it to the option list.

(t (cund ((net (member? option eptlsa-list))
(setql

option-list

(coms option option-list) 33)

141

I

LWFW jW F -VIC-'M- -- . --.-

expressions. This "obj" format is then used by Iagest -c Nes-win [called

by Ingest-chip] or Ingest-iside [used in the Caesar section) to create

the array. These Ideas can be seen In the implementation of LDS's compiler.
The Ibis-compller function assumes that an. lhs-tep-leuel, hIk-

Interrupt-hanier and lbs function are available (See Section V.AI. LBS's
compie r has the f ollIowi ng f ormat:

(delvne Ibs-cempiler (ergs)
(coed
;; If the arguments aren't empty, then process them.
((met (mull ergs))
(mapcor 'process-option (cir ergs)
(preg
;; Define local variables.

-*(la-file 8stat-file coet-file ebi-file eat-fille
Import statport coespert objpsrt hs chip)

(setq In-file (earnest (car ergs) ISW)
(setq stat-fIle (earnest (car ergs) %stat))
(setR tes-file (eaet (tar ergs) 'to))
(setil ebj-file (erncest (tar ergs) .Gbj))
(setq out-file (car ergs))

Check that the input file is not empty and then pro-
;proceed to process the input file.

(caed
Probe the input file to see if it has anything in it.

;If it'snot empty then turn it into the in port.
(I~prehlu-file)

(sotq Import (Imfile Im-file))
(setq statport (fliespem stat-file go))

;The bool ean i nput f ormat i s converted to a
;format showing connectivity and logical
;relationships.

(setq
bs
(heel-to-strmps (read Import) stmtpert))

Check the options and produce the ones desired.

;Produce the Intermediate "obj" format.

143

LBS has a simple architecture based on implementing combinational logic

circuits in CMOS. MacPitts is a larger program with many more possibilities.

C. MACPITTS5 COMPILER

The increase in complexity from LBS to MacPitts can easily be seen in the

syntax used by the latter program. A glance through MacPitt's BNF shows

that it incorporates concepts such as: fuIction, macro, pert [n-bit data],

signal [t or f data], register [datapath storage], flag [signal storage],

orgamelle [functional unit], test [e.g.. " or -I, etc.. MacPitts, unlike LBS,

requires that IO pads be specifically declared [that's why <pin-number>s

are used to specify their location]. Again it should be noted that most of

these ideas are implemented as defstrocts.6 Skim through the BNF to gain

a feeling for MacPltts' syntax:

TABLE 5.2

MACPITTS SYNTAX
Categor low

<MacPitts (program <program-name><word-size>

program> ::= (<eval> I <def> I <always> I <process>) +)

<eval> :: (euaI (compile I simulate I both) <LISP form>)

<def> :: (def <pln-number>
(power I ground I phii I phib I phic))

<def> ::= (del <register-name> register)

Only a brief description is given here of MacPitts. The reader should
consult Southard [RVLI-31, 1963, pp. 1-33 and SIskind, 1981, pp. 1-18.

6 This will be covered in more detail in Chapter VI.

145

TABLE 5.2 (CONTINUED)

MACPITTS SYNTAX

<form> ::= <integer> I "<character>' I <constant-name> I
<register-name> I <port-name> I
(go <form>) I
(call <form>) I
(rator.) I
(par <form>*) I
(if <form><form><form>) I
(caed ((<condtlon>form>)) I
(setq <register-name><f orm>) I
(sotq <port-name><form>) I
(setq <signal-name>condition>)
(<function-name><formula> +) I
<macro>

<macro> (macro <macro-name>{simgle I list)
<LISP form>+)

<organel]e> (argaeelle <organelle-name>
<*conttol-lines><*parameters><'test-lines>

<result?><GEN form><SIM form>)

<function>::= (function <function-name> <organel Is-name>
({integer I beeles})
(<control-i ne>*)(<parameter>M<INT form>+)

<test> (test <test-name><organel1e-name>
(iiteger I beelesem)(<control -line>*)

(<parameter>+)<test-Iine><NT form>)

<condition>::= t I (1 <signal-name> I (ami <condition>) I
(or <condition>+) I (mat <condition>) I
(nor <condtion>) I (snd <condition>) I
(nor <condition>+) I (equ <condition> I
(bit <blt*>{<lnteger><integer form>)) I
(satq <signal-name><condi tion>) I
(<test-name><form>) I
<macro>

147

i , ' '. ' * *. q * '. *0:','',." ? - ; .. ' , .?

TABLE 5.3

PREPASS.L FUNCTION SYNTAX

Function Snua

process-<y>
<y> <z> I defiitioe$ I definltlio I cetral-Ilme I

parameter I test-Il..)
<Z>.- <zz>-defimlelu
<zz> (peur I grom I pble I pblb I pbic I

register I flag I signal I pert I macre I constant I
ergamelle I funecte I test)

eupeed-YY>
yy>::- { process I macre I form-list I form I

cemponemt-list I cempenent

A quick look Is now taken at MacPitts' compiler. It works in a fashion

similar to the LBS compiler. First, the input forms are converted to "obj"

format, and then this object code is transformed into the requested options.

Here is the compiler function:

(define macpltts-cempller (operands)
(prog (file-mana file abject ebj Item)

;; ptime gives run and garbage collection times.
(setq ieitial-ptlime (ptile))
;; The number of garbage collections that occurred.
(setq imitlal-gcceumt sgccoents)
;; If the operands are null or atoms then return to the
;; franz-lisp top level.
(ced ((or (net (list? eperands))

(mull eperands)
(mat (stem? (car eperamds))))

(paten usage: (macpitts fllenme[<eptles])'

(terpr)
(return 0))M

(setq file-ne (car apereads))
;; Set the option-list to the requested and uninhibited
;; default settings.

149

(make-ob ject
(purge-library
(object-definitions object))

(object-flags object)
(object-imta-patbt object)
(object-contral object)
(object-pins object) 111

(Setq file
(outfils (coscut file-mame w.mbj))

(pp-term obi file)
(close file)))

;Was CIF desired?
(ced

((member? 'cit aptlam-lIst)
(setq Item

(catch (lageut-ebject object) mte))
(cund ((mull ltem)(raturn 01)))1
(herald Uiutputimg clt fileO)
(citaut item file-mame file-name)))11

(statistic (cancat OMemsrg used -

(/ (memorg) 1624) OK)
(statistic (cencat

oCampllatlem tooka
(quotient

(- (car (ptime))(cor lmtial-ptime))
3688.8) aCFO mntes))

(statistic (coucat
G6arbage collection took*

(quotient
(- (cair (ptlme))(cadr isitial-ptime))
3611.1) 0CPS mietes) 1

(statistic (cenuat
For a total oft
(SgccoumtS lmitial-gccmumt)
*garbage cellectioems))

(return 0 11

In summary, a bird's eye view of LBSs and MacPitts' compilers shows the

relative differences between the two programs. MacPltts has a more

i 151

VI. ORGEiLLEa

Chapter V contains MacPitts* syntax and its top-level function. MacPitts'

BNF allows the user to define functions, macros, tests and organelles and

use them when writing a MacPItts program. Alternatively, the user can

modify the organelles.1 and library programs and remake MacPitts. In this

fashion the new operators become part of MacPitts' syntax.

A. OVERVIEW

Oefore showing an example of the changes that are made in MacPitts to

change its syntax, the relationships among some of its programs and

functions need to be pointed out. When the user inputs a <MacPitts program>,

the compiler 1located in prepass.l] parses through the <MacPitts form>s. The

program uses its get-<x>, prscess-y> and eupli-<yy> i functions to

process <definition>s; evaluate <eval>s; expand <macro>s; and, obtain

<source>s, <destination>s and <label>s. This is done by using list selectors

to disassemble the <MacPitts program> while checking the syntactic labels

that were used. For example, the words de, grunI, pr ocess, macro,

functlio etc., all trigger the use of the process-defilllo function.

The ovl and prIcess labels are treated separately. The functions used

during the parsing process to obtain <definition>s from the input are shown

below:

Refer to Section V.C.

153

Prepass.l is coordinates the conversion of the <MacPitts program> to a

layout with its get-object function. This operator uses subsidiary

programs [primarily extract.l] to produce an intermediate result, an " .obj

file, which can then instantiated into the silicon mask level by layout

functions [in flags.l, control.l and data-path.l]. This object file is a

diiftruct with the following definition:

(difstruct object
(definitions flags data-path central pins))

A quick look is now taken at the names of the major functional

categories in prepass.l and its helper programs. Skimming through the

function names provides a " feeling " for MacPitts. The most common

operators are summarized by program in Table 6. 1.

TABLE 6. 1

MACPITTS PROGRAM FUNCTION SUMMARY

Proggrm Function Name Format

prepass.l get-<x>, process-<y>, eupUId-<zz>

extract.] eutract-<A>
<A> ::c o campe et-list I prncess I farm I ateml

list I string I finem I register I flag I part I
signal I label I go I call I return I etc.)

frame.] lgest-
 ::- (object I skeleton I ing I net I pins I

power-riag}

control.] Ingaut-<C>
<C> ::c (cnutrol I drluer I mpu I register I

Ieimborer-<D> I etc.)
<D> vates I mur nor-import I nor-gud-line I

etc.)

data-path.l IIegat-<E>
<E> datu-ptb I buses I it I argamelle I etc.)

155

creations of these data structures,4 The functions that are implemented in

the library are only constrained by the designer's imagination and a bit-

slice regime.

The library is used by the Ilkup-<> function to correlate a function

name found in a <MacPitts program> with an already created functional form.

This can be shown In a simple example. Assume that the library is:

- (setq Iibrary '((Ilbrary)(estIat t (nar)
(functilo I ...)(test - ...)))<CR>

Then the equality test, -, can be found as follows:

-) (lookup-test '- Ilibrarg)<CR>
;; Find the" = "test definition form in the library.

(test -..)

In summary, MacPitts relies heavily on defstructs. A <MacPitts

program> is parsed and converted into a ifstruct called an object. The

five portions of this object are then converted into L5 by different

programs. A particular set of layout functional units is included as a

defstruct which contains information relating the unit to MacPitts' syntax

in the library. A corresponding L5 layout of the unit is found in organelles.l.

L5 in turn is a language composed of defstrIcts and layout operators.

With the general idea in mind of how MacPitts coordinates its various

parts to produce a chip, consideration is next given to modifying an

organelle and Implementing it functionally.

4 In Section VI.B an example will be traced all the way from the ldyout to

the test definition.

157

.4-i ,* * * , - - -

B. AN EXAMPLE

The organelle used in this example was designed by Lieutenant Anthony

Mullarky using Magic. The approach used was based on (Fox, 1983, p. 32).

Like Fox, a modification was made to the equality test organelle to reduce

Its size and increase its speed. The organelle Is Implemented so that its

result pulls down the output bus to Vss when the test fails. Two different

cells are used: bit o and a bitN. The zero bit organelle is a one bit equality

checker tied to Vdd in order to precharge the output bus to +5 Volts. The Nth

bit organelle is a one bit equality tester without a pullup. The appellation "

==" is used to differentiate this equality test from MacPitts'" ="

The first items needed are an ergnmelle----lit-U and *rgmmelle-

blit----bt-m. The organelles were made using Magic and output as CIF. The

CIF was converter to Caesar format and then into L5 format. The two

organelles are shown in Figures 6.4 and 6.5.

These two organelles are then incorporated into the standard MacPitts

library. Organelles.], the compiled portion of the library, is composed of a

default set of MacPitts functional units in L5 format. Adders, decrementers,

equality testers, etc., are all located in organelles.l. The L5 layouts are

usually defsymbols and have a name of the form: Imgmut-<X>-urgameIe.

The two basic zero and Nth bit items were made into defsymbols without

any arguments.

(defui Iagmut----orgmmlle (ratim bit)
;; Doesn't use the ratio input.
(cod ((-1 hltf(mrgumele----blt-II

(t (ergmele----hit-mllll

159

-e -- -- * - - --.----- - - - * '

U)

in
Un

a.

U D

Fiue65 ognll-bin

*161

Since ::is a <test> operator, a test form is created to give the

organelle functionality. This form is placed in the library along with the

organe]lIe data structure. The code for <test>* "is:

(test rnr-(integer integer) (
;<name>:::z, <organel 1e>
;<types> :=(integer integer), <control-lines> ::nil

;; <parameters> :((position 1)(posltlon 2))
;<test-line> := (physical 1)
(I(pesltlem 13 (position 2)) (pbgsical 1)
;; <interpret-form> follows:
(lambda (form word-length a V)

(coed ((or (eq a lumielmei-lnteger3
(eq g 'an@mie-mt el r))
umieflmei-b @@Iean)

(t 21)

A MacPitts program is now run to check this new operator [Figure 6.61. '

(program Mowe- 4
;Example of a MACPITTS algorithm to test a 4-bit
;integers equality with the number five.
;<f ilIename> := f Ive==.mac
(jet I11 power)
(detl ground)
(jet 2 phis)
(dl 3 pblb)
(let 4 pblc)
(dl in pert input (5 6 7 1)
(dl out signal output 93

;; A reset pin is needed to initialize the chip.
(del reset signal Input 163
(process equ.ltgI8
first
(coel

;Ifl"rn 'is : to 5then set out tot..
((-- IN 53(Setq out t3(ge first))
,Otherwise, test -in again.

(t (go first)) 3))

163

.C

m

0
-6.

in

* I

Iia

Figure 6.7 Closeup of -- Organelle in flie--mac

165

tat~li~flfS~a~iak~g~i~sts~A.4~tyflSy.St4 SSAASC54SgXa~~ai

U

'I

co

UF

0 -

7-7i

Fiue69Coepof OgnlefD- a

I16

V11 U N LU I L'. -. r wr. -

This thesis' goal was to examine L5 and show how It is used in two
silicon compilers: LBS and MacPitts. The thesis showed that L5 Is an

extension of LISP specifically aimed at VLSI synthesis. LISP's ability to

treat functions as data to create new operatbrs was found to be the basis

for the versatile ierstruct data structure generator. The main result of

the thesis is the incorporation into one document of enough information to

enable a VLSI designer to automate portions of the layout process or change

existing MacPitts functions to meet other needs.

For example, an examination of L5's layout primitives and data

structures showed its compatibility with Caesar and CIF. However, since the

graphical editor now being used at the Naval Postgraduate School is Magic, a

method for using this format with LS Is needed. The suggested approach is

to use the structure of L5 programs that convert Caesar into L5 and vice
versa; and instead, make the conversion directly from CIF to L5. This would

make available a larger pool of circuits which have been converted to CIF

for incorporation Into the compilers. Additionally, it would buffer the

system from other changes in graphical editor file format since CIF is a

widely used format.

Many possible changes to MacPitts have been recommended by Carlson,
Froede and Larrabee; among these suggestions, is to allow pin locations on

all four sides of the chip. In light of what has been presented In this thesis

this would be a fairly straightforward alteration.

169

APPENDIX A: MISCELLANEOUS TOPICS

A. LAYOUT ERRORS

There are two types of errors associated with layouts created from

Macpitts: either the code has been improperly written, or the output CIF is

being plotted at the wrong scale.

An example of improper code is the erroneous specification of Vdd, Vss

and output locations when a new organelle is created. In Section VI.B a new

organelle," ",was input into MacPitts. If different parameters [shown in

Table A.I] had been specified In the organelle structure, then the results of

Figure A.1 would result. Notice that the interconnecting lines have all

shifted to the right 3 X units.

TABLE A. I

ORGANELLE SPECIFICATION COMPARISON

1(6e info 'Iength) 53) ((e Ile 'Ieongt) 52)
feq letI 'width) 40) ((eq Inft 8width) 49)

((eq lufoelimpets) 1(26 31)) ((eq lme 'Inputs) 4(26 31))
eq Iufe 'ii2) (43)) ((q Ilf iii)'(38))

((eq Imfe 'god) a(29)) ((eq lufe 'ind) 1(5 25))
((eq Ilt 'Imlgl) '(5111 ((eq inlu 'diIg) '(4))
((e q l 'ftest) '(51)) ((eq Iut 'test) '(43))

Additionally, the organelle length was specified to be several X units

longer than the layout actually is, to prevent the output line (when routed

to the Weinberger array) from shorting with the clock lines [See Figure.A.21.

171

..... ...- - ~ - ~ - ~ -. .- ~ . JS. *

I

In 4

alU

co

*17

IQ

Is

U

at

0

N

0

u

Ut)

Figure A.3 flue-mac Pins With Correct CIF Scale

175

The user now has all of MacPitts available with the exception of the

organelles and library.

Instead of running MacPitts every time a change is made, the

intermediate object code will be modified. Object code is generated when

five=.mac is run in the following manner:

% muwepitts ohj elf saint sept-c ... pt-d
Mustut flue--.mc & 3 trusbt
*Create an object and CIF file. Redirect comments

*to a trash filIe.

Now, assuming that the macpitts environment has been invoked as

shown above [% macpittsI, two local files that contain commands to

change UNIXS0 directories and plot L5 items are loaded.

-3, (include adit.l)
[load edit.l1

-3, (include Piet.13
flood p1.1.11

)(mIolnm- feetor@- sizel1 236)
230

The object file that was generated by MacPltts, five=:.obj, is altered by

setting its data-path and controller to all. After editing is complete, the

new file is called pin-test.obj and is shown below:

-) (ease cat pIo-IuuI.o.J,

;; The first portion of the object is definitions
(Usource reset)
(register sequeecsr-eqult-stmtm)
(isurce sequemcer-eiquallty-stmte)
(destinatiorn sequeer-equlitg-state)

177

-) (thesis-plot (Ilgaut-object
(read (1nfile spi-test.sbj))) 'pi-test.ebj 0

;; The standard statistics are output, except the control
;; unit and data path are empty.
Statistic - Cantral has a columns
Statistic - Circuit has 73 transistors
Statistic - Control has U tracks
Statistic - Power coasumptio Is 8.834114

watts
Statistic - lata-path Internal bus uses U tracks
Statistic - Dimensions are 1.64030 mu bg

1.7100 m
;; The rest of the output is related to the plotting
;; function.

-) Elude: U 164311 U 171333
Scale: I micro is 1.132315 Iaches (71n)
The plot mill be 6.33 feet

This plot Is shown in Figure A.3. The object file is modified again to

place the pins in different locations:

-) (mmec cat pi-test-2.obj)
;; A random pin ordering was chosen.
(((saura reset)
(register sequencer-aqualitg-state)
(source sequeaer-equalitg-state)
(destination sequecer-equalitg-state)
(part sequemcer-equalitg-ent-state Internal

ili)
(source sequemcer-equalitu-met-state)
(destintio sequemcer-equalitg-met-state)
(label first equailltg 0)
(destimatiem aut)
(source first)
(source In)
(logs flue-)
(word-lmugth 4)
(pewer I I)
(ground 1)
(phia 2)

179

C

10

Lc

' 00

0U r
C

'0.

Figure A.5 flue-mac Modified Pins.

161

Hasemer, T., Looking at LISP, Addison-Wesley, 1984.

Haugeland, J., Artificial Intellgence: The Veryj=Ie, MIT Press, 1985.

Haugeland., J., editor, Mind Design: Philosophy-Psyolgu-Artificial
Intelligaence, MIT Press, 3rd ed., 1985.

Hofstadter, D.R, Metamnagical Thlmas, Basic Books, 1985.

Hon, R.W., and Sequin C.H., A Guide to LSI Imglementation, Xerox Palo Alto
Research Center, 1980.

International Business Machines (IBM) Technical Newsletter GC26-3847-5,
APL Language, 6th ed., IBM Corporation, 1983.

Larrabee, R. C.., VLSI Design with the MacPitts Silicon Comoiler, M. S.
Thesis, Naval Postgraduate School, Monterey, California, June 1985.

MacLennan, B. J., Principles of Programmin LangjgjLQjgn Evaluation
and Imglementation, Holt, Rinehart and Winston, 1983.

Mead, C. and Conway, L., 2d ed., Introduction to VLSI Systems, Addison-
Wesley, 1980.

Ousterhout, J.K., Editing VLSI CIrcuits with Caesar, Computer Science
Division, Electrical and Computer Sciences, University of California, 1985.

Rosenberg, J.M., Dictionary of Computers, Data Processing and
Telecommunications, John Wiley and Sons, 1984.

Scott, W.S., Hamachi, G,, Mayo, R.N. and Ousterhout, editors, J.K., VLSI
Tools: More Works by the Original Artists, Computer Science Division EECS
Department, University of California at Berkeley, 1985.

Scott, W.S., Hamachi, G., Mayo, R.N. and Ousterhout, editors, J.K., 1986 VLSI
Tools: Still More Works by theQrOginal Artists, Computer Science Division
EECS Department, University of California at Berkeley, 1986. .

183
"4

BIBLIOGRAPHY

ACM IEEE Design Automation Conference Proceedings, 19th, IEEE Press,
1982.

Agre, P. E., -Designing A High-Level Silicon Compiler", Proceedings IEEE
International Conference on Comouter Design: VLSI in Comouters ICLI)3
November 1983.

Allen, G.H., Denyer, P.B., Renshaw, D., "A Bit Serial Linear Array DFT",
Proceedings of the IEEE Conference on Acoustics,_5peech and Signal
Processing (ICASSP 84), March 1984.

Allerton, D.J., Batt, D.A., and Curre, A.J., "A VLSI Design Language
Incorporating Self-Timed Concurrent Processes", IEE European Conference on
Electronic Design Automation (EDAJU) March 1984.

Anceau, F., "CAPRI: A Design Methodology and a Silicon Compiler for VLSI
Circuits Specified by Algorithms", in Bryant, 1983, pp. 15-3 1.

Anceau, F., Aas, E.J. (editors), 'VLSI 83: Proceedings of the IFIP TC WG 10.5
International Conference on Very Large Scale Integration, North-Holland,
1983.

Anceau, F., and Schoellkopf, J.P., "CAPRI: A Silicon Compiler for VLSI
Circuits Specified by Algorithms", in Randell, 1983, pp. 149-54.

Ayres, R., "Silicon Compilation-A Hierarchical Use of PLA's", Procqedingof
the I1th Design Automation Conference, 1979.

Bairstow, J.N., "Chip Design Made Easy", High Technology, Volume 5, Number
6, June 1965.

Baker, A., "Selecting a Silicon Compiler", VLSI Systems Design, Volume VII,
Number 5, May 1986.

Baker, S., "Silicon Compilers Puts Systems Houses in VLSI Business",
Electronic Engineering Times No. 300, 8 October 1984.

185

Bloom, M., "Silicon Compilation: The Fast Track to Masks", Electrnic
ngineering Times, Number 294, 13 August 1984.

Bond, J., "Circuit Density and Speed Boost Tomorrow's Hardware", Computer
Design, Volume 23, Number 10, September 1984.

Bond, J., "Future Hardware", Comouter Design, Volume 23, Number 10,
September 1984.

Brayton, R.K., Chen, C.L., McMullen, C.T., Otten, R.H., and Yamour, Y.J.,
"Automated Implementation of Switching Functions as Dynamic CMOS
Circuits", Proceedings of the 1984 Custom Integrated Circuits Conference,
May 1984.

Brayton, R.K., Hachtel, G.D., McMullen, C.T., and Sangiovanni-Vincentelli, A.L.,
kLgic Minimization Algorithms for VLSI Synthesis, Kluwer Academic
Publishers, 1984.

Brown, C. "Silicon Compilers: How Some Labs are Trying to Implement
Them", Electronic Engineering Times, No. 300, 8 October 1984.

Bryant, R., editor, Third Caltech Conference on Very Large Scale Integration,
Computer Science Press, 1983.

Buric, M.R., Christensen, C., and Matheson, T.G., "The Plex Project: VLSI Lay
outs of Microcomputers Generated by a Computer Program", IEEE
International Conference on Computer-Aided Design.__(I CCAD-83)t
September 1983.

Bursky, D., "Circuit Compiler Cuts Chip Area 25 Percent to 40 Percent Over
Standard Cells", Electronic Design, Volume 32, Number 18, 6 September
1984.

Carnegie-Mellon University Departments of Computer Science and Electrical
Engineering Technical Report, by Barbacci, M. R., Barnes, G., Cattell, R. and
Siewiorek, D., The ISPS Computer Descriotion Langunge, 16 August 1979.

Carnegie-Mellon University Departments of Computer Science and Electrical
Engineering Technical Report, by Barbacci, M. R., et. al. , .Tlejymbolic

187

RD-RI71 369 SILICON COMPILATION USING A LISP-BASED LAYOUT LANGUAGE V&
(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
M A NALAGON-FAJAR JUN 86

UNCLSSIFIED FIG 9/2 NL

11111 IA 128

am-

1 .25= 1 1. 01.

MICROCOPY RESOLUTION TEST CHART

NATIO%&A BUREAU OF STANtOARDS- 1963-A

Manipulation of Computer Descrigtions: The ISPS Comguter Descrigtion
Language March 1978.

Capello, P. R., et. a]. editors, VLSI Signal Processing, IEEE Press, 1984.

Carter, T.M., Davis, A., Hayes, A.B., Lindstrom, 6., Klass, D., Maloney, M.P.,
Nelson, O.E., Organick, E.I., and Smith, K.F., 'Transforming an ADA Program
Unit to Silicon and Testing It In an ADA Environment, Rign....nL Pars
COMPCON Soring 04. Twenty-Eighth IEEE Comouter Society International
Conf erencL March 19804.

Chain, K.M., Oh, S.-H., Chin, D., and Moll J.L., Comguter Aided Design and VLSI
Device Develogment Kluwer Academic Publishers, 1985.

Cheng, E.K.,. "The Design of an Ethernet Data Link Controller Chip%, Digg.sLg
Pagers Spring COMPCON 03. Intellectual Leverage for the Information
Soc1ity. March 1983.

Clarg, J.B., Denyer,, P.O. (editors), "The Impact of VLSI on Digital System
Design', Systems on Silicon. First lEE International Specialist Seminar 2
Peter Peregrinus, 19854.

Cline, K., Cutler, M., Kesselman, C., and York, 6., "Automated Attribute
Optimization for VLSI Systems", 1984 Conference Procedings- 3rd Annual
Intonational Phoenix Conference on Comquters and Communications IEEE
Press, 1984.

Collet, R., "Silicon Compilation: A Revolution In VLSI Design", Digitln12iga
Volume 14, Number 8, August 1984.

Conference Record-16th AsIlomar Conference on Circuits Systems &
Comguters, IEEE Press, 1982.

Cory, W.E., and Yan Cleemput, W.M., "Developments In Verification of Design
Correctness", Proceedings 17th Design Automation Conference. 19830.

Curtis, W., "Silicon Compilation Speeds Design of Complex Chips%, Computer
Design. March 1985.

Curtis, W., mDesigning the Micro-VAX Using Silicon Compilation", COMPCON
'85 Comiputer Conference IEEE Computer Society, 1985.

Cuykendall, R., Domic, A., Joyner, W.H., Johnson, S.C., Kelem, S., McBride, D.,
Mostow, J., Savage, J.E., and Saucier, 6., *Design Synthesis and
Measurement"% in Workshog Regort: VLSI and Software Engineering Workshog
1984, pp. 6-9; and, Journal of Systems and Software Volume 4, Number 1,
April 1984.

Derringer, J. A. and Joyner, W. H., Jr., A "New Look at Logic Synthesis",
Proceedings of the 17th Design Automation Conference, 19180.

Darringer, J. A. et. al., 'Logic Synthesis Through Local Transformations",J.
Journal of Research and Devel opment, Volume 25, Number 4, 198 1.

Dasgupta, S., 'Computer Design and Description Languages", Advances in
Comguters, Volume 2 1, Academic Press, 1982.

DeMan, H. et. al., "Custom Design of Hardware Digital Filters on I.C's",
Proceedings of the 1982 Custom Integrated Circuits Conference 1982.

DeMan, H., Reynders. L, Bartholomeus, M., Cornelissen, J., "PLASCO: A Silicon
Compiler for NMOS and CMOS PLA'so, in Anceau, 1983, pp 171 -851.

Denyer, P. B., Renshaw, D., and Bergmabb, N., "A Silicon Compiler for VLSI
Signal Processors", Proceeding of the 8th Eurogean Solid-State Circuits
Confernce (ESCIR)., 19852.

Denyer, P.O., and Renshaw, D., "Case Studies in VLSI Signal Processing Using
a Silicon Compiler", Proceedings ICASSP_ April 1983.

Denyer, P.5., Murray, A.F., and Renshaw, D., "FIRST: Prospect and Retrospect",
In Capello, 1984, pp. 252-264.

Denyer, P. and Renshaw, D., VLSI Signal Processing, A Bit-Serial Aggroach,
Addison-Wesley, 1985.

Digest of Pagers- COMFCON Sorlng 82: High Technolo y in the Information
Industry IEEE Computer Society, 1982.

189

Frantz, D., and Rammig, F.J., "The Impact of an Advanced CHDL In VLSI
Design", Procegdings International Conference on Comouter Design (CCD-
IQ), October 1983.

"Frustration Lead Alles and Rip into the Custom-IC Business", ElItronicf
Volume 57, Number 13, 28 June 1984.

Fujita, T., and Goto, S., "A Rule Based Routing System", ICCD-83.

Furlow, B., "Silicon Compilation Cuts Costs of Custom VLSI", Comuter
Deign Volume 23, Number 12, 15 October 19184.

Gajski, D.D., "The Structure of A Silicon Compiler", IEEE International
Conference on Circuits and Comouters 1982(ICCC 82), IEEE Press, 1982.

Gajski, D.D. and Kuhn, R.H.," Guest Editors' Introduction: New VLSI Tools",
Comguter Volume 16, Number 12, 1983.

Gajs i, D.D., "Silicon Compilers and Expert systems for VLSI", Eroceedingi
'84 ACM IEEE 21 st Design Automation Conference, June 1984.

Gazst, L., "Explicit .Formulas for Lattice Wave Digital Filters", IEEE
Transactions on Circuits and Systems, Volume CAS-32, Number 1, January
1985.

Glasser, L. A. and Dobberpuhl, D. W., The Design and Analysis of VLSI
Circuits Addison-Wesley, 1985.

"Graphics Systems Chip Designed to Replace 80 TTL Components", Electronic
Engineering Times. Number 284, 23 April 1984.

Gray, J.P., editor, VLSI 81. VeEy Large Scale Integration. Proceedings of the
First International Conference on Vejy Large Scale Integration, Academic
Press, 198 1.

Gray, J.P., Buchanan, i. and Robertson, P.S., "Controlling VLSI Complexity
Using a High-Level Language for Design Description", Proceedings IEEE
International Conferenca on Comouter Designl.CCD-83)., October 1983.

191

Hilfinger, P., "SIlage: A High Level-Language and Silicon Compiler for Digital
Signal Processingo, Procedings CICC 198§, 1905.

Hirschhorn, S., and Davis, A.M., "The Revolution in VLSI Design: Parallels
Between Software and VLSI Engineering",[ln Conference Record-16th
Asilomar Conference on Circuits Systems & Comouters, 1982; and- in
Workshoo Reort: VLSI and Software Enginering, 1984, pp. 75-04.

Hodges, D.A., and Jackson, H.G., Analysis and Design of Digital Integrated
Circuits McGraw Hill, 1983.

Holland, J. H., Adaotation in Natural and Artificial Systems: An Introductor
Analusis with Aoolications to Biology, Control and Artificial Intelligence,
The University of Michigan Press, 1975.

IEEE 1984 Workshoo on the Engineering of VLSI and Software. IEEE Press,
1984.

Ishil, J., Sugiura, Y., and Sueshiro, Y., "A Gate Array CAD System and Future
Tasks in the Field", Third Symoosium on VLSI Technologgy, September 1983.

Jespers, P., Sequin, C., and van de Wiele, F., Design Methodologies for VLSI
Crcuits. SitJthoff and Noordhoff, 1982.

Johannsen, D.L., "Bristle Blocks- A Silicon Compiler', Proceedings of the
16th Design Automation Conference 1979.

Johanneen, D.L., Silicon Comollation. PhD. Dissertation, Technical Report
4530, California Institute of Technology, 198 1.

Johnson, S.C., "Code Generation for Silicon", Proceedings 10th ACM Sumoo-
slum on Princioles of Programming Languages, 1903.

Johnson, S.C., "VLSI Circuit Design Reaches the Level of Architectural Des-
cription", E Volume 57, Number 9, 3 May 1984.

Johnson, S.C., and Mazor, S., "Silicon Compiler Lets System Makers Design
Their Own VLSI Chips", Electronic Design. Volume 32, Number 20, 4 October
1984.

193

Lee, B., Ritzman, D., and Snhpp, W., *Silicon Compiler Teams with VLSI
Workstation to Customize CMOS ICs", ElcrncDsg Volume 32, Number
23, 15 November 1984.

Lee, C.H., and Lin-Hendel, C.G., "Current Status and Future Projection of CMOS
Technology", Proceedings IEEE COMPCON, Fall 1982.

Leighton, F.T., and Leiserson, C.E., "Wafer-scale Integration of Systolic
Arrays', Proceeding 23rd IEEE Symposium of Foundations of Comguter

Leinwand, S., and Lamdan, T., "Design Verification Based on Functional
Abstraction", Proceedings 16th Design Automation Conference, 1979.

Leiserson, C.E., Rose, F.M.,. and Saxe, J.D., "Optimizing Synchronous Circuits
by Retiming", in Bryant, 1963, pp 87-1 16.

Liesenberg, H.K.E., and Kinniment, DJ, *Autolagout System for a Hierarchical
I.C. Vesign Environment", integrale VLI, Volume 1, Numbers 2-3, October
1983.

Lopez, A.D., and Law, H.F., OA Dense Gate Matrix Layout Style for MOS LSI",
Digest of Technical Papers, ISC 90

Louie, 6., Ho, T., and Cheng, E., "The Microvax I Data-Path Chip", VLSI Design,
Volume 4, Number 8, December 1983.

Lowe, L., OVLSI Design Shrinks to Mere Man-Weeks", ElcroiS 1982.

Lukuhay, J. and Kubitz, W.J., 'A Layout Synthesis System for nMOS Gate-
Cells", Proceedings-of the 19th Design Automation Conference, 1982.

Lyon, R.F., A Bit-Serial VLSI Architectural Methodology for Sgo1
Processing, in Gray, 19851, pp. 131-140.

Lyon, R.F., USSP@ A Bit-Serial Multigrocessor for Signal Processing, in
Capello, 1984, pp. 64-75.

Naval Postgraduate School Technical Report NPS52-8 1-009, The StruuIral
Analysis of Programming Language by 64J. MacLennan, 9 June 19151.

195

LMM

1984; also in Workshoo Report: VLSI and Software Engineering Workshoo
1984, pp. 117-125.

Moulton, A., "Laying the Power and Ground Wires on a VLSI Chip", ACM IEEE
20th Design Automation Conference 1983.

Murray, A.F., Denyer, P.O., and Renshaw, D., "Self-Testing In Bit Serial VLSI
Parts: High coverage at Low Cost", Proceedings IEEE International Test
CoflrmfL October 1983.

Nash, J.H., and Smith, S.G., "A Front End Graphics Interface to the FIRST
Silicon Compiler", lEE Eurooean Conference on Electronic Design Automation,
March 1984.

NewKirk, J. A. and Matthews, R., The VLSI Designers Library, Addison-
Wesley, 1983.

Offen, RJ., VLSI Image Processing, McGraw Hill, 1905.

Organick, E.I., Lindstrom, G., Smith, D.K., Subrahmanyan, P.A., and Carter, T.,
Transformation of ADA Programs into Silicon Semiannual Technical Report
UTEC 82-020, University of Utah, 1982.

Ostreicher, D., "Where is Computer-Aided Design Going?", Computer Volume
16. Number 5, May 1983.

Panasuk, C., "Silicon Compilers Make Sweeping Changes in the VLSI Design
Worlds", Electronic Design, Volume 32, Number 19, 20 September 1984.

Parker, A.C. et. al., "The CMU Design Automation System: An Example of
Automated Data-Path Design", Proceedings of the 16th Design Automation
Cnf erencL 1979.

Pearl, J., Heuristics: Intelligent Search Strategies for Comouter Problem
S.Yj.g, Addison-Wesley, 1984.

Percival, R., and Fitchett, M., "Designing a Laser-Personalized Gate Array",
VLSI DejgIL Volume 5, Number 2, February 1984.

197

Rekie, H.M., Mayor, J., Petrie, N., and Denyer, P.B., "An Automated Design
Procedure for Frequency Selective Wave Filters", 1983 IEEE International
Sumoosium on Circuits and Systems, Volume 1, IEEE Press, 1983.

Reekie, H.M., Petrie, N., Mayor, J., Denver, P.B., and Lau C.H., "Design and
Implementation of Digital Wave Filters Using Universal Adaptor Structures",
•EE Proceedings 1984, Part F, Volume 131, Number 6, 1984.

Reiss, S.P. and Savage, J.E., "SLAP- A Silicon Layout Program", PEranfl.Qng
IEEE International Conference on Circuits and Comouters 1982.

Reutz, P.A., Pope, S.P. Solberg, B., and Broderson R.W., "Computer Generation
of Digital Filter Banks", Digest of Technical Paoers, IEEE International Solid
State Circuits Conference (I), February 1984.

Rivest, R.L., "The PI (Placement and Interconnect) System", Proceedings 20tI
Design Automation Conference 1982.

Rosenberg, A.L., "References to the Literature on VLSI Algorithmlcs and
Related Mathematical and Practical Issues", N Volume 16,Number 3, Fall 1984.

Rosenberg, J.B., "Chip Assembly Techniques for Custom IC Design in a
Symbolic Virtual Grid Environment", Proceeding MIT Conference on Advanced
Research in VLSI January 1984.

Rosenberg, J.B., and Weste, N.H., ABCD- A Better Circuit Descriotion MCNC
Technical Report 4983-01, Microelectronic Center of North Carolina, 1983.

Rupp, C.A., "Components of a Silicon Compiler Systemo, in Gray, 1981, pp.
227-236.

Saucier, G., and Serrero, G., "Intelligent Assistance for Top Down Design of
VLSI Circuits", in Workshoo Report: VLSI and Software Engineering
WorsbE 1984, pp. 107-111.

Savage, J.E., "Three VLSI Compilation Techniques: PLAs, Weinberger Arrays,
and SLAP, (A New Silicon Layout Program)", ALgorlthmically-Soecialized

mguteri, 1983.

199

Srlnl, V.P., "Test Generation f or MacPitts Designs", ProceedingsIEEEL
International Conf erence on Comguter Design (IC-0) 1983.

Stefik, M. et. of., "The Partitioning of Concerns In Digital System Design",
MIT Conference on Advanced Research in VLSI 1982.

Subrebmanyan, P.A., "Synthesizing VLSI Circuits from Behavioral Specifi-
cations: A Very High Level Silicon Compiler and Its Theoretical Basis", in
Anceau, 1903, pp. 195-2 10.

Suzim, A.A., "Data Processing Section for Mlicroprocessor-Like Integrated
Circuits", IEEE Journal of Solid State Circuits Conference 198 1.

Swartzlander, E.E., VLSI Signal Processing Systems Kluwer Academic
Publishers, 19B5.

"The Evolution of Chip Customization", Highl.Igcbhflg, Volume 2, Number 1,
January 1983.

Touretzky, D. S., LISP: a Gentle Introduction to Symbolic Comautation Harper
£ & Row, 1904.

Trevassos, R.H., "Hardware Design Automation", Proceedings of the 1 983
American Control Conference September 1983.

Tricksy, H.W., "Good Layouts for Pattern Recognizers", IEEE Transactions on
Cmguting, Volume C-3 1, Number 6, June 1982.

Tricksy, H.W. and Ullman, J.D., "Regular Expression Compiler", Digest o
Pa~ers- COMPCON Sgring 82: High- Technoloy in the Inf ormation Industry,
IEEE Computer Society, 1982.

* Turner, L.E., Denyer, P.B., and Renshw, D., "A Bit Serial LDI Recursive Digital
Filter", Proceedings of the IEEE Internation Conference on Acoustics .. DSgeec
and Signal Processingl(JASSE.8),. March 1904.

Ullman, J. D., Comautational Asgectr, of VLSI Computer Science Press, 1984.

VanCleemput, W.S., "Computer Hardware Description Languages and Their
Applications-, Proceedi~jngs 16th Design Automation Conference 1979.

201

wolf, W., Newkirk, J., Mathews, R., and Dutton, R., "Dumbo: A Schematic-to-
Layout Compiler%, in Bryant, 1983, pp. 379-39 1.

Workshoa Report. VLSI and Software Engineering Workshoo IEEE Computer
Society Press, 1984.

Young, J., "Why Silicon Compilers had to Change its Strategy', ElectronIis
19135.

Zarrel Ia, J., "How SilIi con CompilIati on will Af fect Engi neers", Mi crocomouter
AQ01caion, COMPCON Soring '85 Comouter Conference, IEEE Computer
Society, 1985.

203

0. Prof. R. McGhee, Code 52Mz
Deportment of Computer Science
Novel Postgraduate School
Monterey, California 93943-5000

9. Prof. D. Bukofzer, Code 62BH
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, Coifornia 93943-5000

7. Mr. P. Blankenship
Massachusetts institute of Technology
Lincoln Laboratory
P.O. Box 73
Lexington, Massachusetts 02173-0073

0. Mr. J. O'Leary
Massachusetts Institute of Technology
Lincoln Laboratory
P.O. Box 73
Lexington, Massachusetts 02173-0073

9. Mr. A. Casavant

Massachusetts Institute of Technology
Lincoln Laboratory
P.O. Box 73
Lexington, Massachusetts 02173-0073

10. Dr. C. Sequin
Associate Chairmen
Computer Science Division
University of California
589 Evans Hall
Berkeley, California 94720

11. LTCOL H. W. Carter, USAF
Air Force Institute of Technology
Department of Electrical Engineering
AFIT/ENG Building 640 Aree B
Wright-Patterson Air Force Base, Ohio 45433

205

.~ -. -- I~0

19. Mr. E. Carapezza, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

20. Dr. F.A. Malagon-Diaz
2998 Plaza Blanca
Santa Fe, New Mexico 87505-5340

21. CAPT, E. Malag6n, USMC
SMC 02480
Naval Postgraduate School
Monterey, California 93943

22. LCDR M. A. Malag6n-Fajar, USN
1220 7th Street, #2
Monterey, California 93940

23. Prof. H. Titus, Code 62Ts
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

24. Prof. S. Michaels, Code 62Ms

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

25. Prof. L. Abbott, Code 62At
Department of Electrical and Computer Engineering
Naval Postgraduate S,:hool
Monterey, California 93943-5000

207

S

4

'9

t

